Advertisement

Brain Topography

, Volume 31, Issue 2, pp 311–321 | Cite as

Frontal Lobe Connectivity and Network Community Characteristics are Associated with the Outcome of Subthalamic Nucleus Deep Brain Stimulation in Patients with Parkinson’s Disease

  • Nabin Koirala
  • Vinzenz Fleischer
  • Martin Glaser
  • Kirsten E. Zeuner
  • Günther Deuschl
  • Jens Volkmann
  • Muthuraman Muthuraman
  • Sergiu Groppa
Original Paper

Abstract

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is nowadays an evidence-based state of the art therapy option for motor and non-motor symptoms in patients with Parkinson’s disease (PD). However, the exact anatomical regions of the cerebral network that are targeted by STN–DBS have not been precisely described and no definitive pre-intervention predictors of the clinical response exist. In this study, we test the hypothesis that the clinical effectiveness of STN–DBS depends on the connectivity profile of the targeted brain networks. Therefore, we used diffusion-weighted imaging (DWI) and probabilistic tractography to reconstruct the anatomical networks and the graph theoretical framework to quantify the connectivity profile. DWI was obtained pre-operatively from 15 PD patients who underwent DBS (mean age = 67.87 ± 7.88, 11 males, H&Y score = 3.5 ± 0.8) using a 3T MRI scanner (Philips Achieva). The pre-operative connectivity properties of a network encompassing frontal, prefrontal cortex and cingulate gyrus were directly linked to the postoperative clinical outcome. Eccentricity as a topological-characteristic of the network defining how cerebral regions are embedded in relation to distant sites correlated inversely with the applied voltage at the active electrode for optimal clinical response. We found that network topology and pre-operative connectivity patterns have direct influence on the clinical response to DBS and may serve as important and independent predictors of the postoperative clinical outcome.

Keywords

Parkinson’s disease Deep brain stimulation Structural connectivity Community structures Network analysis 

Abbreviations

AAL

Automated anatomical labeling

AUC

Area under the curve

BCT

Brain connectivity toolbox

COG

Center of gravity

DBS

Deep brain stimulation

DWI

Diffusion-weighted imaging

FWHM

Full width at half maximum

H & Y

Hoehn and Yahr

MED OFF/ON

Medication off/on

MPRAGE

Magnetization-prepared rapid gradient-echo

ROC

Receiver operating characteristic

ROI

Region of interest

SMA

Supplementary motor area

STN

Subthalamic nucleus

UPDRS

Unified Parkinson’s disease rating scale

VTA

Volume of tissue activation

Notes

Acknowledgements

This work was supported by the German Research Foundation (DFG; CRC-TR-128).

References

  1. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):e17CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amboni M, Cozzolino A, Longo K, Picillo M, Barone P (2008) Freezing of gait and executive functions in patients with Parkinson’s disease. Mov Disord 23(3):395–400CrossRefPubMedGoogle Scholar
  3. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1):144–155CrossRefPubMedGoogle Scholar
  4. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech 2008(10):10008CrossRefGoogle Scholar
  5. Brittain JS, Brown P (2014) Oscillations and the basal ganglia: motor control and beyond. Neuroimage 85:637–647CrossRefPubMedGoogle Scholar
  6. Brunenberg EJ, Moeskops P, Backes WH, Pollo C, Cammoun L, Vilanova A et al (2012a) Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PloS ONE 7(6):e39061CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brunenberg EJL, Moeskops P, Backes WH, Pollo C, Cammoun L, Vilanova A et al (2012b) Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PloS ONE 7(6):e39061CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198CrossRefPubMedGoogle Scholar
  9. Butson CR, Cooper SE, Henderson JM, McIntyre CC (2007) Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34(17113789):661–670CrossRefPubMedGoogle Scholar
  10. Canu E, Agosta F, Sarasso E, Volonte MA, Basaia S, Stojkovic T et al (2015) Brain structural and functional connectivity in Parkinson’s disease with freezing of gait. Hum Brain Mapp 36(12):5064–5078CrossRefPubMedGoogle Scholar
  11. Fukaya C, Yamamoto T (2015) Deep brain stimulation for parkinson’s disease: recent trends and future direction. Neurologia Medico-Chirurgica 55(5):422–431CrossRefPubMedPubMedCentralGoogle Scholar
  12. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99(12):7821–7826CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324(5925):354–359CrossRefPubMedGoogle Scholar
  14. Groppa S, Herzog J, Falk D, Riedel C, Deuschl G, Volkmann J (2014) Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor. Brain 137(Pt 1):109–121CrossRefPubMedGoogle Scholar
  15. Haynes WI, Haber SN (2013) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci 33(11):4804–4814CrossRefPubMedPubMedCentralGoogle Scholar
  16. Herzog J, Fietzek U, Hamel W, Morsnowski A, Steigerwald F, Schrader B et al (2004) Most effective stimulation site in subthalamic deep brain stimulation for Parkinson’s disease. Mov Disord 19(9):1050–1054CrossRefPubMedGoogle Scholar
  17. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156CrossRefPubMedGoogle Scholar
  18. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841CrossRefPubMedGoogle Scholar
  19. Johansen-Berg H, Behrens TE, Robson MD, Drobnjak I, Rushworth MF, Brady JM et al (2004) Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc Natl Acad Sci USA 101(36):13335–13340CrossRefPubMedPubMedCentralGoogle Scholar
  20. Klingelhoefer L, Samuel M, Chaudhuri KR, Ashkan K (2014) An update of the impact of deep brain stimulation on non motor symptoms in Parkinson’s disease. J Parkinson’s Dis 4(2):289–300Google Scholar
  21. Koshimori Y, Segura B, Christopher L, Lobaugh N, Duff-Canning S, Mizrahi R et al (2015) Imaging changes associated with cognitive abnormalities in Parkinson’s disease. Brain Struct Funct 220(4):2249–2261CrossRefPubMedGoogle Scholar
  22. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19):198701CrossRefPubMedGoogle Scholar
  23. Li Q, Ke Y, Chan DCW, Qian ZM, Yung KKL, Ko H et al (2012) Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron 76(5):1030–1041CrossRefPubMedGoogle Scholar
  24. Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M (2008) et al. Disrupted small-world networks in schizophrenia. Brain 131(Pt 4):945–961CrossRefPubMedGoogle Scholar
  25. McIntyre CC, Hahn PJ (2010) Network perspectives on the mechanisms of deep brain stimulation. Neurobiol Dis 38(3):329–337CrossRefPubMedGoogle Scholar
  26. McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL (2004) Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clinical Neurophysiol 115(3):589–595CrossRefGoogle Scholar
  27. Meunier D, Achard S, Morcom A, Bullmore E (2009) Age-related changes in modular organization of human brain functional networks. Neuroimage 44(3):715–723CrossRefPubMedGoogle Scholar
  28. Micheloyannis S, Pachou E, Stam CJ, Vourkas M, Erimaki S, Tsirka V (2006) Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402(3):273–277CrossRefPubMedGoogle Scholar
  29. Muthuraman M, Deuschl G, Koirala N, Riedel C, Volkmann J, Groppa S (2017) Effects of DBS in parkinsonian patients depend on the structural integrity of frontal cortex. Scientific Rep 7:43571CrossRefGoogle Scholar
  30. Nagano-Saito A, Washimi Y, Arahata Y, Kachi T, Lerch J, Evans A et al (2005) Cerebral atrophy and its relation to cognitive impairment in Parkinson disease. Neurology 64(2):224–229CrossRefPubMedGoogle Scholar
  31. Nambu A, Chiken S (2015) Mechanism of DBS: inhibition, Excitation, or Disruption? In: Itakura T (ed) Deep brain stimulation for neurological disorders: theoretical background and clinical application. Springer International Publishing, Cham, pp 13–20Google Scholar
  32. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23):8577–8582CrossRefPubMedPubMedCentralGoogle Scholar
  33. Odekerken VJJ, van Laar T, Staal MJ, Mosch A, Hoffmann CFE, Nijssen PCG et al (2013) Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 12(1):37–44CrossRefPubMedGoogle Scholar
  34. Olde Dubbelink KT, Hillebrand A, Stoffers D, Deijen JB, Twisk JW, Stam CJ et al (2014) Disrupted brain network topology in Parkinson’s disease: a longitudinal magnetoencephalography study. Brain 137(Pt 1):197–207CrossRefPubMedGoogle Scholar
  35. Opsahl T, Colizza V, Panzarasa P, Ramasco JJ (2008) Prominence and control: the weighted rich-club effect. Phys Rev Lett 101:168702CrossRefPubMedGoogle Scholar
  36. Park H-J, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342(6158):1238411CrossRefPubMedGoogle Scholar
  37. Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J et al (2011) Using graph theory to analyze biological networks. BioData Mining 4:10CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pereira JB, Ibarretxe-Bilbao N, Marti M-J, Compta Y, Junqué C, Bargallo N et al (2012) Assessment of cortical degeneration in patients with Parkinson’s disease by voxel-based morphometry, cortical folding, and cortical thickness. Hum Brain Mapp 33(11):2521–2534CrossRefPubMedGoogle Scholar
  39. Pereira JB, Aarsland D, Ginestet CE, Lebedev AV, Wahlund LO, Simmons A et al. (2015) Aberrant cerebral network topology and mild cognitive impairment in early Parkinson’s disease. Hum Brain Mapp 36(8):2980–2995CrossRefPubMedGoogle Scholar
  40. Ranck JB (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98(3):417–440CrossRefPubMedGoogle Scholar
  41. Ritchey M, Yonelinas AP, Ranganath C (2014) Functional connectivity relationships predict similarities in task activation and pattern information during associative memory encoding. J Cogn Neurosci 26(5):1085–1099CrossRefPubMedGoogle Scholar
  42. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRefPubMedGoogle Scholar
  43. Skidmore F, Korenkevych D, Liu Y, He G, Bullmore E, Pardalos PM (2011) Connectivity brain networks based on wavelet correlation analysis in Parkinson fMRI data. Neurosci Lett 499(1):47–51CrossRefPubMedGoogle Scholar
  44. Sporns O (2003) Graph theory methods for the analysis of neural connectivity patterns. In neuroscience databases. Springer, New York, pp. 171–185Google Scholar
  45. Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2(2):145–162CrossRefPubMedGoogle Scholar
  46. Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett 355(1–2):25–28CrossRefPubMedGoogle Scholar
  47. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17(1):92–99CrossRefPubMedGoogle Scholar
  48. Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappellen van Walsum AM et al (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132(1):213–224CrossRefPubMedGoogle Scholar
  49. Stein E, Bar-Gad I (2013) Beta oscillations in the cortico-basal ganglia loop during parkinsonism. Exp Neurol 245:52–59CrossRefPubMedGoogle Scholar
  50. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289CrossRefPubMedGoogle Scholar
  51. Udupa K, Chen R (2015) The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol 133:27–49CrossRefPubMedGoogle Scholar
  52. van Straaten ECW, Stam CJ (2013) Structure out of chaos: functional brain network analysis with EEG, MEG, and functional MRI. Eur Neuropsychopharmacol 23(1):7–18CrossRefPubMedGoogle Scholar
  53. van den Heuvel MP, Sporns O (2011) Rich-Club organization of the human connectome. J Neurosci 31(44):15775–15786CrossRefPubMedGoogle Scholar
  54. van den Heuvel MP, Stam CJ, Kahn RS, Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci 29(23):7619–7624CrossRefPubMedGoogle Scholar
  55. Vanegas-Arroyave N, Lauro PM, Huang L, Hallett M, Horovitz SG, Zaghloul KA et al. (2016) Tractography patterns of subthalamic nucleus deep brain stimulation. Brain 139(4), 1200–1210.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Voges J, Volkmann J, Allert N, Lehrke R, Koulousakis A, Freund HJ et al. (2002) Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. J Neurosurg 96(2):269–279CrossRefPubMedGoogle Scholar
  57. Weaver FM, Follett KA, Stern M, Luo P, Harris CL, Hur K et al (2012) Randomized trial of deep brain stimulation for Parkinson disease Thirty-six-month outcomes. Neurology 79(1):55–65CrossRefPubMedPubMedCentralGoogle Scholar
  58. Witt K, Granert O, Daniels C, Volkmann J, Falk D, van Eimeren T et al (2013) Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson’s disease: results from a randomized trial. Brain 136(7):2109–2119CrossRefPubMedGoogle Scholar
  59. Wodarg F, Herzog J, Reese R, Falk D, Pinsker MO, Steigerwald F et al (2012) Stimulation site within the MRI-defined STN predicts postoperative motor outcome. Mov Disord 27(7):874–879CrossRefPubMedGoogle Scholar
  60. Yu Q, Sui J, Rachakonda S, He H, Gruner W, Pearlson G et al (2011) Altered topological properties of functional network connectivity in schizophrenia during resting state: a small-world brain network study. PloS ONE 6(9):e25423CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Nabin Koirala
    • 1
  • Vinzenz Fleischer
    • 1
  • Martin Glaser
    • 2
  • Kirsten E. Zeuner
    • 3
  • Günther Deuschl
    • 3
  • Jens Volkmann
    • 4
  • Muthuraman Muthuraman
    • 1
  • Sergiu Groppa
    • 1
  1. 1.Department of NeurologyJohannes Gutenberg UniversityMainzGermany
  2. 2.Department of NeurosurgeryJohannes Gutenberg UniversityMainzGermany
  3. 3.Department of NeurologyUniversity of KielKielGermany
  4. 4.Department of NeurologyUniversity of WürzburgWürzburgGermany

Personalised recommendations