Brain Topography

, Volume 31, Issue 2, pp 257–269 | Cite as

Mapping Slow Waves by EEG Topography and Source Localization: Effects of Sleep Deprivation

  • Alessia Bersagliere
  • Roberto D. Pascual-Marqui
  • Leila Tarokh
  • Peter Achermann
Original Paper


Slow waves are a salient feature of the electroencephalogram (EEG) during non-rapid eye movement (non-REM) sleep. The aim of this study was to assess the topography of EEG power and the activation of brain structures during slow wave sleep under normal conditions and after sleep deprivation. Sleep EEG recordings during baseline and recovery sleep after 40 h of sustained wakefulness were analyzed (eight healthy young men, 27 channel EEG). Power maps were computed for the first non-REM sleep episode (where sleep pressure is highest) in baseline and recovery sleep, at frequencies between 0.5 and 2 Hz. Power maps had a frontal predominance at all frequencies between 0.5 and 2 Hz. An additional occipital focus of activity was observed below 1 Hz. Power maps ≤ 1 Hz were not affected by sleep deprivation, whereas an increase in power was observed in the maps ≥ 1.25 Hz. Based on the response to sleep deprivation, low-delta (0.5–1 Hz) and mid-delta activity (1.25–2 Hz) were dissociated. Electrical sources within the cortex of low- and mid-delta activity were estimated using eLORETA. Source localization revealed a predominantly frontal distribution of activity for low-delta and mid-delta activity. Sleep deprivation resulted in an increase in source strength only for mid-delta activity, mainly in parietal and frontal regions. Low-delta activity dominated in occipital and temporal regions and mid-delta activity in limbic and frontal regions independent of the level of sleep pressure. Both, power maps and electrical sources exhibited trait-like aspects.


Sleep homeostasis Sleep slow oscillations Power topography Source localization 





Low resolution brain electromagnetic tomography,


Non-rapid eye movement (sleep),


Rapid eye movement (sleep),


Standard error of mean,


Slow-wave activity (EEG power in 0.75–4.5 Hz range),


Slow wave sleep



We thank Dr. Alexander Borbély for comments on the manuscript. The study was supported by the Swiss National Science Foundation Grant 320030-130766 and 32003B_146643.

Supplementary material

10548_2017_595_MOESM1_ESM.docx (551 kb)
Supplementary material 1 (DOCX 551 KB)


  1. Achermann P, Borbély AA (1997) Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81:213–222CrossRefPubMedGoogle Scholar
  2. Achermann P, Borbély AA (1998a) Coherence analysis of the human sleep electroencephalogram. Neuroscience 85:1195–1208CrossRefPubMedGoogle Scholar
  3. Achermann P, Borbély AA (1998b) Temporal evolution of coherence and power in the human sleep electroencephalogram. J Sleep Res 7(Suppl 1):36–41CrossRefPubMedGoogle Scholar
  4. Achermann P, Borbély AA (2017) Sleep homeostasis and models of sleep regulation. In: Kryger MH, Roth T, Dement W (eds) Principles and practice of sleep medicine, 6th edn., Elsevier, Philadelphia, PA, pp 377–387CrossRefGoogle Scholar
  5. Achermann P, Finelli LA, Borbely AA (2001) Unihemispheric enhancement of delta power in human frontal sleep EEG by prolonged wakefulness. Brain Res 913:220–223CrossRefPubMedGoogle Scholar
  6. Adamczyk M, Ambrosius U, Lietzenmaier S, Wichniak A, Holsboer F, Friess E (2015) Genetics of rapid eye movement sleep in humans. Transl Psychiatry 5:e598. doi: 10.1038/tp.2015.85 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ambrosius U et al (2008) Heritability of sleep electroencephalogram. Biol Psychiatry 64:344–348CrossRefPubMedGoogle Scholar
  8. Amzica F, Steriade M (1998) Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107:69–83CrossRefPubMedGoogle Scholar
  9. Bersagliere A, Achermann P (2010) Slow oscillations in human non-rapid eye movement sleep electroencephalogram: effects of increased sleep pressure. J Sleep Res 19:228–237CrossRefPubMedGoogle Scholar
  10. Buckelmüller J, Landolt HP, Stassen HH, Achermann P (2006) Trait-like individual differences in the human sleep electroencephalogram. Neuroscience 138:351–356CrossRefPubMedGoogle Scholar
  11. Cao L, Thut G, Gross J (2017) The role of brain oscillations in predicting self-generated sounds. Neuroimage 147:895–903. doi: 10.1016/j.neuroimage.2016.11.001 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cash SS et al (2009) The human K-complex represents an isolated cortical down-state. Science 324:1084–1087CrossRefPubMedPubMedCentralGoogle Scholar
  13. Clancy K, Ding M, Bernat E, Schmidt NB, Li W (2017) Restless ‘rest’: intrinsic sensory hyperactivity and disinhibition in post-traumatic stress disorder. Brain 140:2041–2050. doi: 10.1093/brain/awx116 CrossRefPubMedGoogle Scholar
  14. Coatanhay A, Soufflet L, Staner L, Boeijinga P (2002) EEG source identification: frequency analysis during sleep. C R Biol 325:273–282CrossRefPubMedGoogle Scholar
  15. Crunelli V, David F, Lorincz ML, Hughes SW (2015) The thalamocortical network as a single slow wave-generating unit. Curr Opin Neurobiol 31:72–80. doi: 10.1016/j.conb.2014.09.001 CrossRefPubMedGoogle Scholar
  16. Csercsa R et al (2010) Laminar analysis of slow wave activity in humans. Brain 133:2814–2829CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dang-Vu TT et al (2008) Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci USA 105:15160–15165. doi: 10.1073/pnas.0801819105 CrossRefPubMedPubMedCentralGoogle Scholar
  18. De Gennaro L et al (2008) The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann Neurol 64:455–460CrossRefPubMedGoogle Scholar
  19. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21CrossRefPubMedGoogle Scholar
  20. Dierks T et al (2000) Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer’s disease. Clin Neurophysiol 111:1817–1824CrossRefPubMedGoogle Scholar
  21. Esser SK, Hill SL, Tononi G (2007) Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep 30:1617–1630CrossRefPubMedPubMedCentralGoogle Scholar
  22. Finelli LA (2001) Functional mapping of the human brain during sleep and sleep deprivation Dissertation ETH no 14251Google Scholar
  23. Finelli LA, Baumann H, Borbély AA, Achermann P (2000) Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience 101:523–529CrossRefPubMedGoogle Scholar
  24. Finelli LA, Achermann P, Borbély AA (2001a) Individual ‘fingerprints’ in human sleep EEG topography. Neuropsychopharmacology 25:S57–S62CrossRefGoogle Scholar
  25. Finelli LA, Borbély AA, Achermann P (2001b) Functional topography of the human nonREM sleep electroencephalogram. Eur J Neurosci 13:2282–2290CrossRefPubMedGoogle Scholar
  26. Frackowiak RSJ (ed) (2004) Human brain function. 2nd edn., Academic Press, LondonGoogle Scholar
  27. Frei E, Gamma A, Pascual-Marqui R, Lehmann D, Hell D, Vollenweider FX (2001) Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA). Hum Brain Mapp 14:152–165CrossRefPubMedGoogle Scholar
  28. Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113:702–712CrossRefPubMedGoogle Scholar
  29. Geiger A, Huber R, Kurth S, Ringli M, Jenni OG, Achermann P (2011) The sleep EEG as a marker of intellectual ability in school age children. Sleep 34:181–189CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hämäläinen MS (2006) Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. Neuroimage 31:160–171. doi: 10.1016/j.neuroimage.2005.11.054 CrossRefPubMedGoogle Scholar
  31. Liu Q, Farahibozorg S, Porcaro C, Wenderoth N, Mantini D (2017) Detecting large-scale networks in the human brain using high-density electroencephalography. Hum Brain Mapp. doi: 10.1002/hbm.23688 Google Scholar
  32. Mander BA et al (2015) Beta-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat Neurosci 18:1051–1057. doi: 10.1038/nn.4035 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164:177–190CrossRefPubMedGoogle Scholar
  34. Marzano C, Ferrara M, Curcio G, De Gennaro L (2010) The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep. J Sleep Res 19:260–268CrossRefPubMedGoogle Scholar
  35. Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G (2004) The sleep slow oscillation as a traveling wave. J Neurosci 24:6862–6870CrossRefPubMedGoogle Scholar
  36. Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309:2228–2232CrossRefPubMedGoogle Scholar
  37. Mazziotta J et al (2001) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356:1293–1322CrossRefPubMedPubMedCentralGoogle Scholar
  38. Moroni F et al (2007) Sleep in the human hippocampus: a stereo-EEG study. PLoS ONE 2:e867CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mulert C et al (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94CrossRefPubMedGoogle Scholar
  40. Murphy M, Riedner BA, Huber R, Massimini M, Ferrarelli F, Tononi G (2009) Source modeling sleep slow waves. Proc Natl Acad Sci USA 106:1608–1613CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefPubMedGoogle Scholar
  42. Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I, Tononi G (2011) Regional slow waves and spindles in human sleep. Neuron 70:153–169CrossRefPubMedPubMedCentralGoogle Scholar
  43. Parrino L, Spaggiari MC, Boselli M, Barusi R, Terzano MG (1993) Effects of prolonged wakefulness on cyclic alternating pattern (Cap) during sleep recovery at different circadian phases. J Sleep Res 2:91–95CrossRefPubMedGoogle Scholar
  44. Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12PubMedGoogle Scholar
  45. Pascual-Marqui RD (2007) Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv:07103341 [math-ph],
  46. Pascual-Marqui RD (2009) Theory of the EEG inverse problem. In: Tong S, Thakor N (eds) Quantitative EEG analysis: methods and applications, Artech House, Boston, pp 121–140Google Scholar
  47. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65CrossRefPubMedGoogle Scholar
  48. Pascual-Marqui RD et al (2011) Assessing interactions in the brain with exact low resolution electromagnetic tomography (eLORETA). Philos Trans A Math Phys Eng Sci 369:3768–3784. doi:  10.1098/rsta.2011.0081 CrossRefPubMedGoogle Scholar
  49. Plummer C et al (2010) Clinical utility of distributed source modelling of interictal scalp EEG in focal epilepsy. Clin Neurophysiol 121:1726–1739CrossRefPubMedGoogle Scholar
  50. Poryazova R, Werth E, Parrino L, Terzano MG, Bassetti CL (2011) Cyclic alternating pattern in narcolepsy patients and healthy controls after partial and total sleep deprivation. Clin Neurophysiol 122:1788–1793. doi: 10.1016/j.clinph.2011.02.028 CrossRefPubMedGoogle Scholar
  51. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. National Institutes of Health, Bethesda, MarylandGoogle Scholar
  52. Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, Tononi G (2007) Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30:1643–1657CrossRefPubMedPubMedCentralGoogle Scholar
  53. Saletin JM, van der Helm E, Walker MP (2013) Structural brain correlates of human. sleep oscillations. Neuroimage 83:658–668. doi: 10.1016/j.neuroimage.2013.06.021 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Steriade M, McCormick DA, Sejnowski TJ (1993a) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685CrossRefPubMedGoogle Scholar
  55. Steriade M, Nuñez A, Amzica F (1993b) A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252–3265PubMedGoogle Scholar
  56. Steriade M, Nuñez A, Amzica F (1993c) Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13:3266–3283PubMedGoogle Scholar
  57. Tan HR, Gross J, Uhlhaas PJ (2015) MEG-measured auditory steady-state oscillations show high test-retest reliability: a sensor and source-space. analysis. Neuroimage 122:417–426. doi: 10.1016/j.neuroimage.2015.07.055 CrossRefPubMedGoogle Scholar
  58. Tarokh L, Carskadon MA, Achermann P (2011) Trait-like characteristics of the sleep EEG across adolescent development. J Neurosci 31:6371–6378. doi: 10.1523/JNEUROSCI.5533-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tarokh L, Rusterholz T, Achermann P, Van Dongen HP (2015) The spectrum of the non-rapid eye movement sleep electroencephalogram following total sleep deprivation is trait-like. J Sleep Res 24:360–363. doi: 10.1111/jsr.12279 CrossRefPubMedGoogle Scholar
  60. Terzano MG et al (2002) Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med 3:187–199. doi: 10.1016/S1389-9457(02)00003-5 CrossRefPubMedGoogle Scholar
  61. Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62CrossRefPubMedGoogle Scholar
  62. Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation. and integration. Neuron 81:12–34. doi: 10.1016/j.neuron.2013.12.025 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tucker AM, Dinges DF, Van Dongen HP (2007) Trait interindividual differences in the sleep physiology of healthy young adults. J Sleep Res 16:170–180. doi: 10.1111/j.1365-2869.2007.00594.x CrossRefPubMedGoogle Scholar
  64. Vitacco D, Brandeis D, Pascual-Marqui R, Martin E (2002) Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum Brain Mapp 17:4–12CrossRefPubMedGoogle Scholar
  65. Vyazovskiy VV, Harris KD (2013) Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat Rev Neurosci 14:443–451. doi: 10.1038/nrn3494 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Vyazovskiy VV, Riedner BA, Cirelli C, Tononi G (2007) Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep 30:1631–1642CrossRefPubMedPubMedCentralGoogle Scholar
  67. Vyazovskiy VV, Faraguna U, Cirelli C, Tononi G (2009a) Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity. J Neurophysiol 101:1921–1931CrossRefPubMedPubMedCentralGoogle Scholar
  68. Vyazovskiy VV et al (2009b) Cortical firing sleep homeostasis. Neuron 63:865–878CrossRefPubMedPubMedCentralGoogle Scholar
  69. Worrell GA, Lagerlund TD, Sharbrough FW, Brinkmann BH, Busacker NE, Cicora KM, O’Brien TJ (2000) Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topogr 12:273–282CrossRefPubMedGoogle Scholar
  70. Yang L, Wilke C, Brinkmann B, Worrell GA, He B (2011) Dynamic imaging of ictal oscillations using non-invasive high-resolution EEG. Neuroimage 56:1908–1917. doi:  10.1016/j.neuroimage.2011.03.043 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zumsteg D, Wennberg RA, Treyer V, Buck A, Wieser HG (2005) H2 15O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus. Neurology 65:1657–1660CrossRefPubMedGoogle Scholar
  72. Zumsteg D, Friedman A, Wieser HG, Wennberg RA (2006a) Propagation of interictal discharges in temporal lobe epilepsy: correlation of spatiotemporal mapping with intracranial foramen ovale electrode recordings. Clin Neurophysiol 117:2615–2626CrossRefPubMedGoogle Scholar
  73. Zumsteg D, Lozano AM, Wennberg RA (2006b) Depth electrode recorded cerebral responses with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol 117:1602–1609CrossRefPubMedGoogle Scholar
  74. Zumsteg D, Lozano AM, Wieser HG, Wennberg RA (2006c) Cortical activation with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol 117:192–207CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland
  2. 2.Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
  3. 3.The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital of PsychiatryZurichSwitzerland
  4. 4.University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of BernBernSwitzerland
  5. 5.Zurich Center for Interdisciplinary Sleep ResearchUniversity of ZurichZurichSwitzerland
  6. 6.Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland

Personalised recommendations