Brain Topography

, Volume 31, Issue 2, pp 228–241 | Cite as

Separating the Idea from the Action: A sLORETA Study

  • Martin Rakusa
  • Pierpaolo Busan
  • Piero Paolo Battaglini
  • Janez Zidar
Original Paper


Simple imaginary movements activate similar cortical and subcortical areas to actual movements, chiefly in the sensory-motor network. However, only a few studies also examined the imagery of more skilful movements such as reaching. Ten volunteers performed reaching movements or imagined the same movements. EEG was simultaneously recorded and analysed with sLORETA, which compared the preparation for actual and imagined reaching with respect to their baseline and between tasks. Major differences between them were found at three time intervals after target presentation, always in favour of the actual reaching condition. The first one was from 160 to 220 msec in the frontal and parietal regions. The second difference was evident from 220 to 320 msec in the premotor cortex. The third difference was evident from 320 msec, mainly in the perirolandic region. Also, the anterior and posterior cingulate cortices were widely involved, in both tasks. We suggest the existence of two separate systems which may work together during actual reaching programming. The first one involves structures such as the premotor cortex, supplementary motor area and primary motor cortex, together with the parietal and occipital cortex. This system may integrate extrinsic target coordinates with proprioceptive information from the reaching arm and pre-stored programs in the associative motor cortex. It is activated strongly and involves more cortical areas in actual than imagined reaching. The second system, common to both tasks, involves anterior and posterior cingulate cortices, with the possible role of contributing awareness and focusing the various components of the process.


Reaching Electroencephalography Standardized low-resolution brain electromagnetic tomography Sensory-motor network Motor imagery 



We wish to thank our engineer, Ignac Zidar, for his technical support. Authors are grateful to Dr. Katie Palmer for revision of linguistics.


  1. Archambault PS, Ferrari-Toniolo S, Caminiti R, Battaglia-Mayer A (2015) Visually-guided correction of hand reaching movements: the neurophysiological bases in the cerebral cortex. Vision Res 110:244–256. doi:  10.1016/j.visres.2014.09.009 CrossRefPubMedGoogle Scholar
  2. Beer J, Blakemore C, Previc FH, Liotti M (2002) Areas of the human brain activated by ambient visual motion, indicating three kinds of self-movement. Exp Brain Res 143:78–88. doi:  10.1007/s00221-001-0947-y CrossRefPubMedGoogle Scholar
  3. Beurze SM, de Lange FP, Toni I, Medendorp WP (2007) Integration of target and effector information in the human brain during reach planning. J Neurophysiol 97:188–199. doi:  10.1152/jn.00456.2006 CrossRefPubMedGoogle Scholar
  4. Busan P, Zanon M, Vinciati F et al (2012) Transcranial magnetic stimulation and preparation of visually-guided reaching movements. Front Neuroeng 5:18. doi: 10.3389/fneng.2012.00018 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Calautti C, Jones PS, Naccarato M et al (2007) The relationship between motor deficit and hemisphere activation balance after stroke: a 3 T fMRI study. Neuroimage 34:322–331CrossRefPubMedGoogle Scholar
  6. Cramer SC, Lastra L, Lacourse MG, Cohen MJ (2005) Brain motor system function after chronic, complete spinal cord injury. Brain 128:2941–2950CrossRefPubMedGoogle Scholar
  7. Eaves DL, Riach M, Holmes PS, Wright DJ (2016) Motor imagery during action observation: a brief review of evidence, theory and future research opportunities. Front Neurosci 10:514CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fernandez-Ruiz J, Goltz HC, DeSouza JFX et al (2007) Human parietal “reach region” primarily encodes intrinsic visual direction, not extrinsic movement direction, in a visual motor dissociation task. Cereb Cortex 17:2283–2292. doi:  10.1093/cercor/bhl137 CrossRefPubMedGoogle Scholar
  9. Filimon F (2010) Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing. Neuroscientist 16:388–407. doi:  10.1177/1073858410375468 CrossRefPubMedGoogle Scholar
  10. Filimon F, Nelson JD, Hagler DJ, Sereno MI (2007) Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage 37:1315–1328CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gerardin E, Sirigu A, Lehéricy S et al (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10:1093–1104. doi:  10.1093/cercor/10.11.1093 CrossRefPubMedGoogle Scholar
  12. Ibáñez J, Monge-Pereira E, Molina-Rueda F et al (2017) Low latency estimation of motor intentions to assist reaching movements along multiple sessions in chronic stroke patients: a feasibility study. Front Neurosci 11:126PubMedPubMedCentralGoogle Scholar
  13. Isomura Y, Takada M (2004) Neural mechanisms of versatile functions in primate anterior cingulate cortex. Rev Neurosci 15:279–291CrossRefPubMedGoogle Scholar
  14. Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14:S103–S109CrossRefGoogle Scholar
  15. Johnson SH, Corballis PM, Gazzaniga MS (2001) Within grasp but out of reach: evidence for a double dissociation between imagined hand and arm movements in the left cerebral hemisphere. Neuropsychologia 39:36–50. doi:  10.1016/S0028-3932(00)00096-8 CrossRefPubMedGoogle Scholar
  16. Kertzman C, Schwarz U, Zeffiro T, Hallett M (1997) The role of posterior parietal cortex in visually guided reaching movements in humans. Exp Brain Res 114:170–183CrossRefPubMedGoogle Scholar
  17. Leech R, Sharp DJ (2014) The role of the posterior cingulate cortex in cognition and disease. Brain 137:12–32. doi:  10.1093/brain/awt162 CrossRefPubMedGoogle Scholar
  18. Leiguarda R (2005) Apraxias as traditionally defined. In: Freund H-J, Jeannerod M, Hallett M (eds.) Higher order motor disorders: from neuroanatomy and neurobiology to clinical neurology. Oxford University Press, Oxford, pp 303–339Google Scholar
  19. Lew E, Chavarriaga R, Silvoni S, Millàn JdR (2012) Detection of self-paced reaching movement intention from EEG signals. Front Neuroeng 5:13CrossRefPubMedPubMedCentralGoogle Scholar
  20. López-Larraz E, Antelis JM, Montesano L et al. (2012) Continuous decoding of motor attempt and motor imagery from EEG activity in spinal cord injury patients. Conf Proc IEEE Eng Med Biol Soc 2012:1798–1801. doi:  10.1109/EMBC.2012.6346299 PubMedGoogle Scholar
  21. López-Larraz E, Montesano L, Gil-Agudo A et al (2015) Evolution of EEG motor rhythms after spinal cord injury: a longitudinal study. PLoS ONE 10:e0131759CrossRefPubMedPubMedCentralGoogle Scholar
  22. Malhotra P, Coulthard EJ, Husain M (2009) Role of right posterior parietal cortex in maintaining attention to spatial locations over time. Brain 132:645–660. doi:  10.1093/brain/awn350 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mangun GR, Buonocore MH, Girelli M, Jha AP (1998) ERP and fMRI measures of visual spatial selective attention. Hum Brain Mapp 6:383–389CrossRefPubMedGoogle Scholar
  24. Margulies DS, Vincent JL, Kelly C et al (2009) Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci USA 106:20069–20074. doi:  10.1073/pnas.0905314106 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Meister I, Krings T, Foltys H et al (2004) Playing piano in the mind—an fMRI study on music imagery and performance in pianists. Cogn Brain Res 19:219–228. doi:  10.1016/j.cogbrainres.2003.12.005 CrossRefGoogle Scholar
  26. Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46:774–785. doi:  10.1016/j.neuropsychologia.2007.10.005 CrossRefPubMedGoogle Scholar
  27. Nadig KG, Jäncke L, Lüchinger R, Lutz K (2010) Motor and non-motor error and the influence of error magnitude on brain activity. Exp Brain Res 202:45–54. doi:  10.1007/s00221-009-2108-7 CrossRefPubMedGoogle Scholar
  28. Naranjo JR, Brovelli A, Longo R et al (2007) EEG dynamics of the frontoparietal network during reaching preparation in humans. Neuroimage 34:1673–1682. doi: 10.1016/j.neuroimage.2006.07.049 CrossRefPubMedGoogle Scholar
  29. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefPubMedGoogle Scholar
  30. Orr C, Hester R (2012) Error-related anterior cingulate cortex activity and the prediction of conscious error awareness. Front Hum Neurosci 6:1–12. doi:  10.3389/fnhum.2012.00177 CrossRefGoogle Scholar
  31. Park W, Kwon GH, Kim YH et al (2016) EEG response varies with lesion location in patients with chronic stroke. J Neuroeng Rehabil 13:21CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12PubMedGoogle Scholar
  33. Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2:417–424. doi:  10.1038/35077500 CrossRefPubMedGoogle Scholar
  34. Pilgramm S, de Haas B, Helm F et al (2016) Motor imagery of hand actions: decoding the content of motor imagery from brain activity in frontal and parietal motor areas. Hum Brain Mapp 37:81–93CrossRefPubMedGoogle Scholar
  35. Rakusa M, Hribar A, Koritnik B et al (2013) Assessment of the haptic robot as a new tool for the study of the neural control of reaching. Neurol Sci 34:1779–1790. doi:  10.1007/s10072-013-1337-5 CrossRefPubMedGoogle Scholar
  36. Schulz KP, Bédard ACV, Czarnecki R, Fan J (2011) Preparatory activity and connectivity in dorsal anterior cingulate cortex for cognitive control. Neuroimage 57:242–250. doi:  10.1016/j.neuroimage.2011.04.023 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shenhav A, Botvinick MM, Cohen JD (2013) The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79:217–240. doi:  10.1016/j.neuron.2013.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sirigu A, Duhamel JR, Cohen L et al (1996) The mental representation of hand movements after parietal cortex damage. Science 273:1564–1568CrossRefPubMedGoogle Scholar
  39. Srinivasan L, Asaad WF, Ginat DT et al (2013) Action Initiation in the human dorsal anterior cingulate cortex. PLoS ONE 8:e55247. doi:  10.1371/journal.pone.0055247 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stephani C, Fernandez-Baca Vaca G, MacIunas R et al (2011) Functional neuroanatomy of the insular lobe. Brain Struct Funct 216:137–149. doi:  10.1007/s00429-010-0296-3 CrossRefPubMedGoogle Scholar
  41. Tomberg C, Caramia MD (1991) Prime mover muscle in finger lift or finger flexion reaction times: identification with transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 81:319–322CrossRefPubMedGoogle Scholar
  42. Vingerhoets G (2014) Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Front Psychol 5:151CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zhang S, Li CR (2012) Functional connectivity mapping of the human precuneus by resting state fMRI. Neuroimage 59:3548–3562. doi:  10.1016/j.neuroimage.2011.11.023 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Division of Neurology, Institute of Clinical NeurophysiologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
  2. 2.Department of NeurologyUniversity Medical Centre MariborMariborSlovenia
  3. 3.IRCCS Fondazione Ospedale San CamilloVeniceItaly
  4. 4.Department of Life Sciences, B.R.A.I.N. Center for NeuroscienceUniversity of TriesteTriesteItaly

Personalised recommendations