Advertisement

Brain Topography

, Volume 31, Issue 2, pp 161–173 | Cite as

Parcellation of Macaque Cortex with Anatomical Connectivity Profiles

Original Paper

Abstract

The macaque model has been widely used to investigate the brain mechanisms of specific cognitive functions and psychiatric disorders. However, a detailed functional architecture map of the macaque cortex in vivo is still lacking. Here, we aimed to construct a new macaque cortex atlas based on its anatomical connectivity profiles using in vivo diffusion MRI. First, we defined the macaque cortical seed areas using the NeuroMaps atlas. Then, we applied the anatomical connectivity patterns-based parcellation approach to parcellate the macaque cortex into 80 subareas in each hemisphere, which were approximately symmetric between the two hemispheres. In each hemisphere, we identified 14 subareas in the frontal cortex, 9 subareas in the somatosensory cortex, 13 subareas in the parietal cortex, 16 subareas in the temporal cortex, 16 subareas in the occipital cortex, and 12 subareas in the limbic system. Finally, the graph-based network analyses of the anatomical network based on newly constructed macaque cortex atlas identified seven hub areas including bilateral ventral premotor cortex, bilateral superior parietal lobule, right medial precentral gyrus, and right precuneus. This newly constructed macaque cortex atlas may facilitate studies of the structure and functions of the macaque brain in the future.

Keywords

Macaque Cortex atlas Anatomical connectivity profiles Parcellation Hub 

Notes

Acknowledgements

This study was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB02030300, XDB02010001, XDB02050100), and the Natural Science Foundation of China (91132301, 91432302, 31500867, 91132302). The authors thank Rhoda E. and Edmund F. Perozzi for editing assistance.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10548_2017_576_MOESM1_ESM.docx (3 mb)
Supplementary material 1 (DOCX 3088 KB)

References

  1. Azadbakht H, Parkes LM, Haroon HA, Augath M, Logothetis NK, de Crespigny A, D’Arceuil HE, Parker GJ (2015) Validation of high-resolution tractography against in vivo tracing in the macaque visual cortex. Cereb Cortex 25(11):4299–4309. doi: 10.1093/cercor/bhu326 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J Comp Neurol 256(2):211–228. doi: 10.1002/cne.902560203 CrossRefPubMedGoogle Scholar
  3. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111(3):209–219CrossRefPubMedGoogle Scholar
  4. Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103(3):247–254CrossRefPubMedGoogle Scholar
  5. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34(1):144–155. doi: 10.1016/j.neuroimage.2006.09.018 CrossRefPubMedGoogle Scholar
  6. Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19(12):2767–2796. doi: 10.1093/cercor/bhp055 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Binney RJ, Parker GJ, Lambon Ralph MA (2012) Convergent connectivity and graded specialization in the rostral human temporal lobe as revealed by diffusion-weighted imaging probabilistic tractography. J Cogn Neurosci 24(10):1998–2014. doi: 10.1162/jocn_a_00263 CrossRefPubMedGoogle Scholar
  8. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198. doi: 10.1038/nrn2575 CrossRefPubMedGoogle Scholar
  9. Calabrese E, Badea A, Coe CL, Lubach GR, Shi Y, Styner MA, Johnson GA (2015) A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. NeuroImage 117:408–416. doi: 10.1016/j.neuroimage.2015.05.072 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Capitanio JP, Emborg ME (2008) Contributions of non-human primates to neuroscience research. Lancet 371(9618):1126–1135. doi: 10.1016/S0140-6736(08)60489-4 CrossRefPubMedGoogle Scholar
  11. Donahue CJ, Sotiropoulos SN, Jbabdi S, Hernandez-Fernandez M, Behrens TE, Dyrby TB, Coalson T, Kennedy H, Knoblauch K, Van Essen DC, Glasser MF (2016) Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey. J Neurosci 36(25):6758–6770. doi: 10.1523/JNEUROSCI.0493-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eickhoff SB, Heim S, Zilles K, Amunts K (2006) Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 32(2):570–582CrossRefPubMedGoogle Scholar
  13. Fan L, Wang J, Zhang Y, Han W, Yu C, Jiang T (2014) Connectivity-based parcellation of the human temporal pole using diffusion tensor imaging. Cereb Cortex 24(12):3365–3378. doi: 10.1093/cercor/bht196 CrossRefPubMedGoogle Scholar
  14. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47CrossRefPubMedGoogle Scholar
  15. Frey S, Pandya DN, Chakravarty MM, Bailey L, Petrides M, Collins DL (2011) An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space). NeuroImage 55(4):1435–1442. doi: 10.1016/j.neuroimage.2011.01.040 CrossRefPubMedGoogle Scholar
  16. Gallay DS, Gallay MN, Jeanmonod D, Rouiller EM, Morel A (2012) The insula of Reil revisited: multiarchitectonic organization in macaque monkeys. Cereb Cortex 22(1):175–190. doi: 10.1093/cercor/bhr104 CrossRefPubMedGoogle Scholar
  17. Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8(1):30–52CrossRefPubMedGoogle Scholar
  18. Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC (2009) Age- and gender-related differences in the cortical anatomical network. J Neurosci 29(50):15684–15693. doi: 10.1523/JNEUROSCI.2308-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gregoriou GG, Rossi AF, Ungerleider LG, Desimone R (2014) Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nat Neurosci 17(7):1003–1011. doi: 10.1038/nn.3742 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223. doi: 10.1148/rg.26si065510 CrossRefPubMedGoogle Scholar
  21. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159. doi: 10.1371/journal.pbio.0060159 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R, Wedeen VJ, Meuli R, Thiran JP, Grant PE (2010) White matter maturation reshapes structural connectivity in the late developing human brain. Proc Natl Acad Sci USA 107(44):19067–19072. doi: 10.1073/pnas.1009073107 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Harriger L, van den Heuvel MP, Sporns O (2012) Rich club organization of macaque cerebral cortex and its role in network communication. PLoS ONE 7(9):e46497. doi: 10.1371/journal.pone.0046497 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hutchison RM, Everling S (2014) Broad intrinsic functional connectivity boundaries of the macaque prefrontal cortex. NeuroImage 88:202–211. doi: 10.1016/j.neuroimage.2013.11.024 CrossRefPubMedGoogle Scholar
  25. Hutchison RM, Gallivan JP, Culham JC, Gati JS, Menon RS, Everling S (2012a) Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. J Neurophysiol 107(9):2463–2474. doi: 10.1152/jn.00891.2011 CrossRefPubMedGoogle Scholar
  26. Hutchison RM, Womelsdorf T, Gati JS, Leung LS, Menon RS, Everling S (2012b) Resting-state connectivity identifies distinct functional networks in macaque cingulate cortex. Cereb Cortex 22(6):1294–1308. doi: 10.1093/cercor/bhr181 CrossRefPubMedGoogle Scholar
  27. Hutchison RM, Culham JC, Flanagan JR, Everling S, Gallivan JP (2015) Functional subdivisions of medial parieto-occipital cortex in humans and nonhuman primates using resting-state fMRI. NeuroImage 116:10–29. doi: 10.1016/j.neuroimage.2015.04.068 CrossRefPubMedGoogle Scholar
  28. Johansen-Berg H, Behrens TE, Robson MD, Drobnjak I, Rushworth MF, Brady JM, Smith SM, Higham DJ, Matthews PM (2004) Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc Natl Acad Sci USA 101(36):13335–13340. doi: 10.1073/pnas.0403743101 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kaiser M, Hilgetag CC (2004) Edge vulnerability in neural and metabolic networks. Biol Cybern 90(5):311–317. doi: 10.1007/s00422-004-0479-1 CrossRefPubMedGoogle Scholar
  30. Krubitzer L, Clarey J, Tweedale R, Elston G, Calford M (1995) A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. J Neurosci 15(5 Pt 2):3821–3839PubMedGoogle Scholar
  31. Ku SP, Tolias AS, Logothetis NK, Goense J (2011) fMRI of the face-processing network in the ventral temporal lobe of awake and anesthetized macaques. Neuron 70(2):352–362. doi: 10.1016/j.neuron.2011.02.048 CrossRefPubMedGoogle Scholar
  32. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19):198701. doi: 10.1103/PhysRevLett.87.198701 CrossRefPubMedGoogle Scholar
  33. Lewis JW, Van Essen DC (2000a) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428(1):112–137CrossRefPubMedGoogle Scholar
  34. Lewis JW, Van Essen DC (2000b) Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J Comp Neurol 428(1):79–111CrossRefPubMedGoogle Scholar
  35. Li W, Qin W, Liu H, Fan L, Wang J, Jiang T, Yu C (2013) Subregions of the human superior frontal gyrus and their connections. NeuroImage 78:46–58. doi: 10.1016/j.neuroimage.2013.04.011 CrossRefPubMedGoogle Scholar
  36. Liu H, Qin W, Li W, Fan L, Wang J, Jiang T, Yu C (2013) Connectivity-based parcellation of the human frontal pole with diffusion tensor imaging. J Neurosci 33(16):6782–6790. doi: 10.1523/JNEUROSCI.4882-12.2013 CrossRefPubMedGoogle Scholar
  37. Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, Villringer A, Castellanos FX, Milham MP, Petrides M (2009) Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci USA 106(47):20069–20074. doi: 10.1073/pnas.0905314106 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21(6):1254–1272. doi: 10.1093/cercor/bhq201 CrossRefPubMedGoogle Scholar
  39. Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG, Behrens TE, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MF (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31(11):4087–4100. doi: 10.1523/JNEUROSCI.5102-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296(5569):910–913. doi: 10.1126/science.1065103 CrossRefPubMedGoogle Scholar
  41. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827. doi: 10.1126/science.298.5594.824 CrossRefPubMedGoogle Scholar
  42. Modha DS, Singh R (2010) Network architecture of the long-distance pathways in the macaque brain. Proc Natl Acad Sci USA 107(30):13485–13490. doi: 10.1073/pnas.1008054107 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Morecraft RJ, Cipolloni PB, Stilwell-Morecraft KS, Gedney MT, Pandya DN (2004) Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J Comp Neurol 469(1):37–69. doi: 10.1002/cne.10980 CrossRefPubMedGoogle Scholar
  44. Morecraft RJ, Stilwell-Morecraft KS, Cipolloni PB, Ge J, McNeal DW, Pandya DN (2012) Cytoarchitecture and cortical connections of the anterior cingulate and adjacent somatomotor fields in the rhesus monkey. Brain Res Bull 87(4–5):457–497. doi: 10.1016/j.brainresbull.2011.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Neubert FX, Mars RB, Thomas AG, Sallet J, Rushworth MF (2014) Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81(3):700–713. doi: 10.1016/j.neuron.2013.11.012 CrossRefPubMedGoogle Scholar
  46. Newman ME (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256CrossRefGoogle Scholar
  47. Pandya DN, Sanides F (1973) Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Z Anat Entwicklungsgesch 139(2):127–161CrossRefPubMedGoogle Scholar
  48. Pandya DN, Seltzer B (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204(2):196–210. doi: 10.1002/cne.902040208 CrossRefPubMedGoogle Scholar
  49. Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3(8):606–616. doi: 10.1038/nrn893 pii]CrossRefPubMedGoogle Scholar
  50. Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  51. Petrides M, Pandya DN (2002) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 16(2):291–310CrossRefPubMedGoogle Scholar
  52. Preuss TM, Goldman-Rakic PS (1991) Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310(4):475–506. doi: 10.1002/cne.903100403 CrossRefPubMedGoogle Scholar
  53. Rohlfing T, Kroenke CD, Sullivan EV, Dubach MF, Bowden DM, Grant KA, Pfefferbaum A (2012) The INIA19 Template and NeuroMaps Atlas for primate brain image parcellation and spatial normalization. Front Neuroinform 6:27. doi: 10.3389/fninf.2012.00027 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069. doi: 10.1016/j.neuroimage.2009.10.003 CrossRefPubMedGoogle Scholar
  55. Seelke AM, Padberg JJ, Disbrow E, Purnell SM, Recanzone G, Krubitzer L (2012) Topographic Maps within Brodmann’s Area 5 of macaque monkeys. Cereb Cortex 22(8):1834–1850. doi: 10.1093/cercor/bhr257 CrossRefPubMedGoogle Scholar
  56. Seltzer B, Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149(1):1–24CrossRefPubMedGoogle Scholar
  57. Seltzer B, Pandya DN (1989) Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 290(4):451–471. doi: 10.1002/cne.902900402 CrossRefPubMedGoogle Scholar
  58. Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42. doi: 10.1371/journal.pcbi.0010042 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Styner M, Knickmeyer R, Joshi S, Coe C, Short SJ, Gilmore J (2007) Automatic brain segmentation in rhesus monkeys. In: Medical imaging, 2007. International Society for Optics and Photonics, pp 65122L–65128LGoogle Scholar
  60. Wang J, Fan L, Zhang Y, Liu Y, Jiang D, Zhang Y, Yu C, Jiang T (2012) Tractography-based parcellation of the human left inferior parietal lobule. NeuroImage 63(2):641–652. doi: 10.1016/j.neuroimage.2012.07.045 CrossRefPubMedGoogle Scholar
  61. Wang J, Fan L, Wang Y, Xu W, Jiang T, Fox PT, Eickhoff SB, Yu C, Jiang T (2015a) Determination of the posterior boundary of Wernicke’s area based on multimodal connectivity profiles. Hum Brain Mapp 36(5):1908–1924. doi: 10.1002/hbm.22745 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wang J, Yang Y, Fan L, Xu J, Li C, Liu Y, Fox PT, Eickhoff SB, Yu C, Jiang T (2015b) Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches. Hum Brain Mapp 36:238–257. doi: 10.1002/hbm.22626 CrossRefPubMedGoogle Scholar
  63. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442. doi: 10.1038/30918 CrossRefPubMedGoogle Scholar
  64. Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M (2012) The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48(1):58–81. doi: 10.1016/j.cortex.2011.03.004 CrossRefPubMedGoogle Scholar
  65. Zhang Y, Fan L, Zhang Y, Wang J, Zhu M, Zhang Y, Yu C, Jiang T (2014) Connectivity-based parcellation of the human posteromedial cortex. Cereb Cortex 24(3):719–727. doi: 10.1093/cercor/bhs353 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Brainnetome Center, Institute of AutomationChinese Academy of SciencesBeijingChina
  3. 3.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
  4. 4.State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  5. 5.Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
  6. 6.CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations