Brain Topography

, Volume 29, Issue 6, pp 824–833 | Cite as

Developmental Trajectory of Beta Cortical Oscillatory Activity During a Knee Motor Task

  • Max J. Kurz
  • Amy L. Proskovec
  • James E. Gehringer
  • Katherine M. Becker
  • David J. Arpin
  • Elizabeth Heinrichs-Graham
  • Tony W. Wilson
Original Paper


There is currently a void in the scientific literature on the cortical beta oscillatory activity that is associated with the production of leg motor actions. In addition, we have limited data on how these cortical oscillations may progressively change as a function of development. This study began to fill this vast knowledge gap by using high-density magnetoencephalography to quantify the beta cortical oscillatory activity over a cross-section of typically developing children as they performed an isometric knee target matching task. Advanced beamforming methods were used to identify the spatiotemporal changes in beta oscillatory activity during the motor planning and motor action time frames. Our results showed that a widespread beta event-related desynchronization (ERD) was present across the pre/postcentral gyri, supplementary motor area, and the parietal cortices during the motor planning stage. The strength of this beta ERD sharply diminished across this fronto-parietal network as the children initiated the isometric force needed to match the target. Rank order correlations indicated that the older children were more likely to initiate their force production sooner, took less time to match the targets, and tended to have a weaker beta ERD during the motor planning stage. Lastly, we determined that there was a relationship between the child’s age and the strength of the beta ERD within the parietal cortices during isometric force production. Altogether our results suggest that there are notable maturational changes during childhood and adolescence in beta cortical oscillatory activity that are associated with the planning and execution of leg motor actions.


Children Leg Magnetoencephalography Parietal Sensorimotor 



This work was supported by Grants from the National Institutes of Health (5R21-HD077532, 1R01-HD086245) and the National Science Foundation (NSF 1539067).


  1. Alegre M, Labarga A, Gurtubay IG, Iriarte J, Malanda A, Artieda J (2002) Beta electroencephalograph changes during passive movements: sensory afferences contribute to beta event-related desynchronization in humans. Neurosci Lett 331(1):29–32CrossRefPubMedGoogle Scholar
  2. Alegre M, Gurtubay IG, Labarga A, Iriarte J, Malanda A, Artieda J (2003) Alpha and beta oscillatory changes during stimulus-induced movement paradigms: effect of stimulus predictability. Neuroreport 14(3):381–385CrossRefPubMedGoogle Scholar
  3. Barry RL, Williams JM, Klassen LM, Gallivan JP, Culham JC, Menon RS (2010) Evaluation of preproscessing steps to compensate for magnetic field distortions due to body movements in BOLD fMRI. Magn Reson Imaging 28:235–244CrossRefPubMedGoogle Scholar
  4. Beurze SM, de Lange FP, Toni I, Medendrop WP (2007) Integration of target and effector information in the human brain during reach planning. J Neurophys 97:188–199CrossRefGoogle Scholar
  5. Bueti D, Walsh V, Frith C, Rees G (2008) Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci 20(2):204–214CrossRefPubMedGoogle Scholar
  6. Buneo CA, Anderson RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44:2594–2606CrossRefPubMedGoogle Scholar
  7. Cassim F, Szurhaj W, Sediri H, Devos D, Bourriez JL, Poirot I, Derambure P, Defebvre L, Guieu JD (2000) Brief and sustained movements: differences in event-related (de)synchronization (ERD/ERS) patterns. Clin Neurophys 111:2032–2039CrossRefGoogle Scholar
  8. Ciccarelli O, Toosy AT, Marsden JF, Wheeler-Kinshott CM, Sahyoun C, Matthews PM, Miller DH, Thompson AJ (2005) Identifying brain regions for integrative sensorimotor processing with ankle movements. Exp Brain Res 166:31–42CrossRefPubMedGoogle Scholar
  9. Contreras-Vidal JL, Bo J, Boudreau JP, Clark JE (2005) Development of visuomotor representations for hand movement in young children. Exp Brain Res 162(2):155–164CrossRefPubMedGoogle Scholar
  10. Crone NE, Miglioretti DL, Gordon B, Lesser RP (1998) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121:2301–2315CrossRefPubMedGoogle Scholar
  11. Davies BL, Gehringer JE, Kurz MJ (2015) Age-related differences in the motor planning of a lower leg target matching task. Hum Mov Sci 44:299–306CrossRefPubMedGoogle Scholar
  12. De Almeida PMD, Vieira AICMD, Canario NIS, Castelo-Branco M, Caldas ALD (2015) Brain activity during lower-limb movement with manual facilitation: an fMRI study. Neurol Res Int 701452:1–14CrossRefGoogle Scholar
  13. Della-Maggiore V, Malfait N, Ostry DJ, Paus T (2004) Stimulation of the posterior parietal cortex interferes with arm trajectory adjustments during the learning of new dynamics. J Neurosci 24(44):9971–9976CrossRefPubMedGoogle Scholar
  14. Dobkin BH, Firestine A, West M, Saremi K, Woods R (2004) Ankle dorsiflexion as an fMRI paradigm to assay motor control for walking during rehabilitation. NeuroImage 23:370–381CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ernst MD (2004) Permutation methods: a basis for exact inference. Stat Sci 19(4):676–685CrossRefGoogle Scholar
  16. Gaetz W, MacDonald M, Cheyne D, Snead OC (2010) Neuromagnetic imaging of movement-related cortical oscillations in children and adults: age predicts post-movement beta rebound. NeuroImage 51:792–807CrossRefPubMedGoogle Scholar
  17. Gaetz W, Edgar JC, Wang DJ, Roberts TP (2011) Relating MEG measured motor cortical oscillation to resting γ-aminobutyric acid (GABA) concentration. NeuroImage 55(2):616–621CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gallivan JP, McLean DA, Valyear KF, Pettypiece CE, Culham J (2011) Decoding action intentions from preparatory brain activity in human parieto-frontal networks. J Neurosci 31(26):9599–9610CrossRefPubMedGoogle Scholar
  19. Gallivan JP, McLean DA, Flanagan JR, Culham JC (2013) Where one hand meets the other: limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas. J Neurosci 33(5):1991–2008CrossRefPubMedGoogle Scholar
  20. Grent-’t-Jong T, Oostenveld R, Jensen O, Medendorp WP, Praamstra P (2014) Competitive interactions in sensorimotor cortex: oscillations express separation between alternative movement targets. J Neurophys 112(2):224–232CrossRefGoogle Scholar
  21. Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Nat Acad Sci 98:694–699CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hall SD, Standford IM, Yamawaki N, McAllister N, Ronnqvist KC, WoodHall GL, Furlong PL (2011) The role of GABAergic modulation in motor function related neuronal network activity. NeuroImage 56:1506–1510CrossRefPubMedGoogle Scholar
  23. Heinrichs-Graham E, Wilson TW (2015a) Spatiotemporal oscillatory dynamics during the encoding and maintenance of a visual working memory task. Cortex 69:121–130CrossRefPubMedPubMedCentralGoogle Scholar
  24. Heinrichs-Graham E, Wilson TW (2015b) Coding complexity in the human motor circuit. Hum Brain Mapp 36(12):5155–5167CrossRefPubMedGoogle Scholar
  25. Heinrichs-Graham E, Wilson TW, Santamaria PM, Heithoff SK, Torres-Russotto D, Hutter-Saunders JA, Estes KA, Meza JL, Mosley RL, Gendelman HE (2014) Neuromagnetic evidence of abnormal movement-related beta desynchronization in Parkinson’s disease. Cereb Cortex 24(10):2669–2678CrossRefPubMedGoogle Scholar
  26. Heinrichs-Graham E, Arpin DJ, Wilson TW (2016) Cue-related temporal factors modulate movement-related beta oscillatory activity in the human motor circuit. J Cogn Neurosci 11:1–13Google Scholar
  27. Hillebrand A, Singh KD, Holliday IE, Furlong PL, Barnes GR (2005) A new approach to neuroimaging with magnetoencephalography. Hum Brain Mapp 25:199–211CrossRefPubMedGoogle Scholar
  28. Johannsen P, Christensen LOD, Sinkjaer T, Nielsen JB (2001) Cerebral functional anatomy of voluntary contractions of ankle muscles in man. J Physiol 535:397–406CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jurkiewicz MT, Gaetz WC, Bostan AC, Cheyne D (2006) Post-movement beta rebound is generated in the motor cortex: evidence from neuromagnetic recordings. NeuroImage 32:1281–1289CrossRefPubMedGoogle Scholar
  30. Kaiser J, Birbaumer N, Lutzenberger W (2001) Event-related beta desynchroniztion indicates timing of response selection in a delayed-response paradigm in humans. Neurosci Lett 312:149–152CrossRefPubMedGoogle Scholar
  31. Kapreli E, Athanasopoulos S, Papathanasiou M, van Hecke P, Strimpakos N, Gouliamos A, Peeters R, Sunaert S (2006) Lateralization of brain activity during lower limb joint movement. An fMRI study. NeuroImage 32:1709–1721CrossRefPubMedGoogle Scholar
  32. Kilner J, Bott L, Posada A (2005) Modulations in the degree of synchronization during ongoing oscillatory activity in the human brain. Eur J Neurosci 21:2547–2554CrossRefPubMedGoogle Scholar
  33. Kurz MJ, Becker KM, Heinrichs-Graham E, Wilson TW (2014a) Neurophysiological abnormalities in the sensorimotor cortices during the motor planning and movement execution stages of children with cerebral palsy. Dev Med Child Neurol 56(11):1072–1077CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kurz MJ, Heinrichs-Graham E, Arpin DJ, Becker KM, Wilson TW (2014b) Aberrant synchrony in the somatosensory cortices predicts motor performance errors in children with cerebral palsy. J Neurophysiol 111(3):573–579CrossRefPubMedGoogle Scholar
  35. Kurz MJ, Becker KM, Heinrichs-Graham E, Wilson TW (2015a) Children with cerebral palsy have uncharacterisitc somatosensory cortical oscillations after mechanoreceptor stimulation. Neuroscience 305:67–75CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kurz MJ, Heinrichs-Graham E, Becker KM, Wilson TW (2015b) The magnitude of somatosensory cortical activity is related to the mobilty and strength impairments seen in children with cerebral palsy. J Neurophysiol 113:3143–3150CrossRefPubMedPubMedCentralGoogle Scholar
  37. Luft AR, Smith GV, Forrester L, Whitall J, Macko RF, Hauser TK, Goldberg AP, Hanley DF (2002) Comparing brain activation associated with isolated upper and lower limb movement across corresponding joints. Hum Brain Mapp 17:131–140CrossRefPubMedGoogle Scholar
  38. MacIntosh BJ, Mraz R, Baker N, Staines WR, Graham SJ (2004) Optimizing the experimental design for ankle dorsiflexion fMRI. NeuroImage 22:1619–1627CrossRefPubMedGoogle Scholar
  39. Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164(1):177–190CrossRefPubMedGoogle Scholar
  40. Miller KJ, Leuthardt EC, Schalk G, Rao RPN, Anderson NR, Moran DW, Miller JW, Ojemann JG (2007) Spectral changes in cortical surface potentials during motor movement. J Neurosci 27(9):2424–2432CrossRefPubMedGoogle Scholar
  41. Muthukumaraswamy SD, Myers JFM, Wilson SJ, Nutt DJ, Lingford-Hughes A (2013) The effect of elevated endogenous GABA levels on movement related network oscillations. NeuroImage 66:36–41CrossRefPubMedGoogle Scholar
  42. Neuper C, Pfurtscheller G (1996) Post-movement synchronization of beta rhythms in the EEG over the cortical foot area in man. Neurosci Lett 216:17–20CrossRefPubMedGoogle Scholar
  43. Neuper C, Pfurtscheller G (2001) Evidence for distinct beta resonance frequencies in human EEG related to specific sensorimotor cortical areas. Clin Neurophys 112:2084–2097CrossRefGoogle Scholar
  44. Pfurtscheller G, Berghold A (1989) Patterns of cortical activation during planning of voluntary movement. Electroencephalogr Clin Neurophysiol 72(3):250–258CrossRefPubMedGoogle Scholar
  45. Pfurtscheller G, Graimann B, Huggins JE, Levine SP, Schuh LA (2003) Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophys 114:1226–1236CrossRefGoogle Scholar
  46. Proskovec AL, Heinrichs-Graham E, Wilson TW (2016) Aging modulates the oscillatory dynamics underlying successful working memory encoding and maintenance. Hum Brain Mapp 37:2348–2361CrossRefPubMedGoogle Scholar
  47. Sahyoun C, Floyer-Lea A, Johansen-Berg H, Matthews PM (2004) Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements. NeuroImage 21:568–575CrossRefPubMedGoogle Scholar
  48. Scantlebury M, Cunningham T, Dockstader C, Laughlin S, Gaetz W, Rockel C, Dickson J, Mabbott D (2014) Relations between white matter maturation and reaction time in childhood. J Int Neuropsychol Soc 20:99–112CrossRefPubMedGoogle Scholar
  49. Seto E, Sela G, McIlroy WE, Black SE, Staines WR, Bronskill MJ, McIntosh AR, Graham SJ (2001) Quantifying head motion associated with motor tasks used in fMRI. NeuroImage 14:284–297CrossRefPubMedGoogle Scholar
  50. Shadmehr R (2004) Generalization as a behavioral window to the neural mechanisms of learning internal models. Hum Mov Sci 23:543–568CrossRefPubMedPubMedCentralGoogle Scholar
  51. Talairach G, Tournoux P (1998) Co-planar stereotaxic atlas of the human brain. Thieme, New YorkGoogle Scholar
  52. Taulu S, Simola J (2006) Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol 51(7):1759–1768CrossRefPubMedGoogle Scholar
  53. Tzagarakis C, Ince NF, Leuthold AC, Pellizzer GP (2010) Beta-band activity during motor planning reflects response uncertainty. J Neurosci 30(4):11270–11277CrossRefPubMedGoogle Scholar
  54. Tzagarakis C, West S, Pellizzer G (2015) Brain oscillatory activity during motor preparation: effect of directional uncertainty on beta, but not alpha, frequency band. Front Neurosci 9(1–13):2015Google Scholar
  55. Valyear KF, Frey SH (2015) Human posterior parietal cortex mediates hand-specific planning. NeuroImage 114:226–238CrossRefPubMedPubMedCentralGoogle Scholar
  56. van Veen BD, van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44:867–880CrossRefPubMedGoogle Scholar
  57. Wheaton LA, Carpenter M, Mizelle JC, Forrester L (2008) Preparatory band specific premotor cortical activity differentiates upper and lower extremity movement. Exp Brain Res 184:121–126CrossRefPubMedGoogle Scholar
  58. Wilson TW, Slason E, Asherin R, Kronberg E, Teale PD, Reite ML, Rojas DC (2010) An extended motor network generates beta and gamma oscillatory perturbations during development. Brain Cogn 73(2):75–84CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wilson TW, Slason E, Asherin R, Kronberg E, Teale PD, Reite ML, Rojas DC (2011) Abnormal gamma and beta MEG activity during finger movements in early-onset psychosis. Dev Neuropsychol 36(5):596–613CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wilson TW, Heinrichs-Graham E, Becker KM (2014) Circadian modulation of motor- related beta oscillatory responses. NeuroImage 102:531–539CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wilson TW, Heinrichs-Graham E, Becker KM, Aloi J, Robertson KR, Sandkovsky U, White ML, O’Neill J, Knott NL, Fox HS, Swindells S (2015) Multimodal neuroimaging evidence of alterations in cortical structure and function in HIV-infected older adults. Hum Brain Mapp 36(3):897–910CrossRefPubMedGoogle Scholar
  62. Wilson TW, Heinrichs-Graham E, Proskovec AL, McDermott TJ (2016) Neuroimaging with magnetoencephalography: a dynamic view of brain pathophysiology. Transl Res. doi: 10.1016/j.trsl.2016.01.007 Google Scholar
  63. Wolpert DM (2007) Probabilistic models in human sensorimotor control. Hum Move Sci 26:511–524CrossRefGoogle Scholar
  64. Yan JH, Thomas JR, Stelmach GE, Thomas KT (2000) Developmental features of rapid aiming arm movements across the lifespan. J Motor Behav 32(2):121–140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Max J. Kurz
    • 1
    • 2
  • Amy L. Proskovec
    • 2
    • 3
  • James E. Gehringer
    • 1
    • 2
  • Katherine M. Becker
    • 2
  • David J. Arpin
    • 1
    • 2
  • Elizabeth Heinrichs-Graham
    • 2
  • Tony W. Wilson
    • 2
    • 4
    • 5
  1. 1.Department of Physical Therapy, Munroe-Meyer Institute for Genetics and RehabilitationUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Center for MagnetoencephalographyUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.Department of PsychologyUniversity of Nebraska – OmahaOmahaUSA
  4. 4.Pharmacology and Experimental Neuroscience, College of MedicineUniversity of Nebraska Medical CenterOmahaUSA
  5. 5.Department of Neurological Sciences, College of MedicineUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations