Brain Topography

, Volume 29, Issue 4, pp 539–551 | Cite as

Effects of Dopamine and Serotonin Systems on Modulating Neural Oscillations in Hippocampus-Prefrontal Cortex Pathway in Rats

  • Xiaxia Xu
  • Chenguang Zheng
  • Lei An
  • Rubin Wang
  • Tao Zhang
Original Paper


Theta and gamma oscillations are believed to play an important role in cognition and memory, and their phase coupling facilitates the information transmission in hippocampal-cortex network. In a rat model of chronic stress, the phase coupling of both theta and gamma oscillations between ventral hippocampal CA1 (vCA1) and medial prefrontal cortex (mPFC) was found to be disrupted, which was associated with the impaired synaptic plasticity in the pathway. However, little was known about the mechanisms underlying the process. In order to address this issue, both dopamine and serotonin as monoaminergic neurotransmitters were involved in this study, since they were crucial factors in pathological basis of depressive disorder. Local field potentials (LFPs) were recorded simultaneously at both vCA1 and mPFC regions under anesthesia, before and after the injection of dopamine D1 receptor antagonist and 5-HT1A receptor agonist, respectively. The results showed that the blockage of D1 receptor could lead to depression-like decrement on theta phase coupling. In addition, the activation of 5-HT1A receptor enhanced vCA1–mPFC coupling on gamma oscillations, and attenuated CA1 theta-fast gamma cross frequency coupling. These data suggest that the theta phase coupling between vCA1 and mPFC may be modulated by dopamine system that is an underlying mechanism of the cognitive dysfunction in depression. Besides, the serotonergic system is probably involved in the regulation of gamma oscillations coupling in vCA1–mPFC network.

Graphical Abstract


Ventral hippocampus Prefrontal cortex Theta rhythm Gamma oscillations Dopamine 5-HT 



Cross frequency coupling


Conditional mutual information


Chronic unpredictable stresses




Field excitatory postsynaptic potential


Evolution map approach


Local field potential


Long term potentiation


Medial prefrontal cortex


Phase-amplitude coupling


Phase-amplitude coupling-phase locking value


Phase locking value


Ventral hippocampal CA1





This work was supported by Grants from the National Natural Science Foundation of China (11232005, 31171053), and 111 Project (B08011).


  1. Adhikari A, Topiwala MA, Gordon JA (2010) Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65:257–269CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arnsten AF (2011) Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia. Int J Dev Neurosci 29:215–223CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56CrossRefPubMedGoogle Scholar
  4. Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, Wiener SI (2010) Coherent theta oscillations and reorganization of spike timing in the hippocampal–prefrontal network upon learning. Neuron 66:921–936CrossRefPubMedGoogle Scholar
  5. Benchenane K, Tiesinga PH, Battaglia FP (2011) Oscillations in the prefrontal cortex: a gateway to memory and attention. Curr Opin Neurobiol 21:475–485CrossRefPubMedGoogle Scholar
  6. Bentivoglio M, Morelli M (2005) Chapter I The organization and circuits of mesencephalic dopaminergic neurons and the distribution of dopamine receptors in the brain. Handb Chem Neuroanat 21:1–107CrossRefGoogle Scholar
  7. Bieri KW, Bobbitt KN, Colgin LL (2014) Slow and fast gamma rhythms coordinate different spatial coding modes in hippocampal place cells. Neuron 82:670–681CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blier P, Serrano A, Scatton B (1990) Differential responsiveness of the rat dorsal and median raphe 5-HT systems to 5-HT1 receptor agonists and p-chloroamphetamine. Synapse 5:120–133CrossRefPubMedGoogle Scholar
  9. Bruns A, Eckhorn R (2004) Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. Int J Psychophysiol 51:97–116CrossRefPubMedGoogle Scholar
  10. Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340CrossRefPubMedGoogle Scholar
  11. Callier S, Snapyan M, Le Crom S, Prou D, Vincent JD, Vernier P (2003) Evolution and cell biology of dopamine receptors in vertebrates. Biol Cell 95:489–502CrossRefPubMedGoogle Scholar
  12. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N (2007) The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci 27:2781–2787CrossRefPubMedGoogle Scholar
  14. Cheetham SC, Crompton MR, Katona CL, Horton RW (1990) Brain 5-HT1 binding sites in depressed suicides. Psychopharmacology 102:544–548CrossRefPubMedGoogle Scholar
  15. Colgin LL (2013) Mechanisms and functions of theta rhythms. Annu Rev Neurosci 36:295–312CrossRefPubMedGoogle Scholar
  16. Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357CrossRefPubMedGoogle Scholar
  17. Dejean C, Arbuthnott G, Wickens JR, Le Moine C, Boraud T, Hyland BI (2011) Power fluctuations in beta and gamma frequencies in rat globus pallidus: association with specific phases of slow oscillations and differential modulation by dopamine D1 and D2 receptors. J Neurosci 31:6098–6107CrossRefPubMedGoogle Scholar
  18. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21CrossRefPubMedGoogle Scholar
  19. Drevets WC, Thase ME, Moses-Kolko EL, Price J, Frank E, Kupfer DJ, Mathis C (2007) Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl Med Biol 34:865–877CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dzirasa K, Ramsey AJ, Takahashi DY, Stapleton J, Potes JM, Williams JK, Gainetdinov RR, Sameshima K, Caron MG, Nicolelis MA (2009) Hyperdopaminergia and NMDA receptor hypofunction disrupt neural phase signaling. J Neurosci 29:8215–8224CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dzirasa K, McGarity DL, Bhattacharya A, Kumar S, Takahashi JS, Dunson D, McClung CA, Nicolelis MA (2011) Impaired limbic gamma oscillatory synchrony during anxiety-related behavior in a genetic mouse model of bipolar mania. J Neurosci 31:6449–6456CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12:105–118CrossRefPubMedGoogle Scholar
  23. Gartside SE, Johnson DA, Leitch MM, Troakes C, Ingram CD (2003) Early life adversity programs changes in central 5-HT neuronal function in adulthood. Eur J Neurosci 17:2401–2408CrossRefPubMedGoogle Scholar
  24. Goldman-Rakic PS, Muly EC 3rd, Williams GV (2000) D(1) receptors in prefrontal cells and circuits. Brain Res Rev 31:295–301CrossRefPubMedGoogle Scholar
  25. Gonzalez-Islas C, Hablitz JJ (2003) Dopamine enhances EPSCs in layer II-III pyramidal neurons in rat prefrontal cortex. J Neurosci 23:867–875PubMedGoogle Scholar
  26. Gordon JA, Lacefield CO, Kentros CG, Hen R (2005) State-dependent alterations in hippocampal oscillations in serotonin 1A receptor-deficient mice. J Neurosci 25:6509–6519CrossRefPubMedGoogle Scholar
  27. Goto Y, Yang CR, Otani S (2010) Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol Psychiatry 67:199–207CrossRefPubMedGoogle Scholar
  28. Green KF, Rawlins JN (1979) Hippocampal theta in rats under urethane: generators and phase relations. Electroencephalogr Clin Neurophysiol 47:420–429CrossRefPubMedGoogle Scholar
  29. Gurden H, Takita M, Jay TM (2000) Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. J Neurosci 20:RC106PubMedGoogle Scholar
  30. Haberzettl R, Fink H, Bert B (2014) Role of 5-HT1A- and 5-HT2A receptors for the murine model of the serotonin syndrome. J Pharmacol Tox Met 70:129–133CrossRefGoogle Scholar
  31. Hess EJ, Albers LJ, Le H, Creese I (1986) Effects of chronic SCH23390 treatment on the biochemical and behavioral properties of D1 and D2 dopamine receptors: potentiated behavioral responses to a D2 dopamine agonist after selective D1 dopamine receptor upregulation. J Pharmacol Exp Ther 238:846–854PubMedGoogle Scholar
  32. Jang CG, Kang M, Cho JH, Lee SB, Kim H, Park S, Lee J, Park SK, Hong M, Shin MK, Shim IS, Bae H (2004) Nelumbinis Semen reverses a decrease in 5-HT1A receptor binding induced by chronic mild stress, a depression-like symptom. Arch Pharmacal Res 27:1065–1072CrossRefGoogle Scholar
  33. Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69:375–390CrossRefPubMedGoogle Scholar
  34. Jay TM, Burette F, Laroche S (1995) NMDA receptor-dependent long-term potentiation in the hippocampal afferent fibre system to the prefrontal cortex in the rat. Eur J Neurosci 7:247–250CrossRefPubMedGoogle Scholar
  35. Jay TM, Rocher C, Hotte M, Naudon L, Gurden H, Spedding M (2004) Plasticity at hippocampal to prefrontal cortex synapses is impaired by loss of dopamine and stress: importance for psychiatric diseases. Neurotox Res 6:233–244CrossRefPubMedGoogle Scholar
  36. Kalia M (2005) Neurobiological basis of depression: an update. Metab Clin Exp 54:24–27CrossRefPubMedGoogle Scholar
  37. Lambas-Senas L, Mnie-Filali O, Certin V, Faure C, Lemoine L, Zimmer L, Haddjeri N (2009) Functional correlates for 5-HT(1A) receptors in maternally deprived rats displaying anxiety and depression-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry 33:262–268CrossRefPubMedGoogle Scholar
  38. Lante F, de Jesus Ferreira MC, Guiramand J, Recasens M, Vignes M (2006) Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus. Hippocampus 16:345–360CrossRefPubMedGoogle Scholar
  39. Laroche S, Jay TM, Thierry AM (1990) Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/subicular region. Neurosci Lett 114:184–190CrossRefPubMedGoogle Scholar
  40. Lopez JF, Chalmers DT, Little KY, Watson SJ, A.E. Bennett Research Award (1998) Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry 43:547–573CrossRefPubMedGoogle Scholar
  41. Lopez-Figueroa AL, Norton CS, Lopez-Figueroa MO, Armellini-Dodel D, Burke S, Akil H, Lopez JF, Watson SJ (2004) Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry 55:225–233CrossRefPubMedGoogle Scholar
  42. Luttgen M, Elvander E, Madjid N, Ogren SO (2005) Analysis of the role of 5-HT1A receptors in spatial and aversive learning in the rat. Neuropharmacology 48:830–852CrossRefPubMedGoogle Scholar
  43. Matsumoto M, Shikanai H, Togashi H, Izumi T, Kitta T, Hirata R, Yamaguchi T, Yoshioka M (2008) Characterization of clozapine-induced changes in synaptic plasticity in the hippocampal-mPFC pathway of anesthetized rats. Brain Res 1195:50–55CrossRefPubMedGoogle Scholar
  44. Matulewicz P, Kasicki S, Hunt MJ (2010) The effect of dopamine receptor blockade in the rodent nucleus accumbens on local field potential oscillations and motor activity in response to ketamine. Brain Res 1366:226–232CrossRefPubMedGoogle Scholar
  45. Millan MJ, Agid Y, Brune M, Bullmore ET, Carter CS, Clayton NS, Connor R, Davis S, Deakin B, DeRubeis RJ, Dubois B, Geyer MA, Goodwin GM, Gorwood P, Jay TM, Joels M, Mansuy IM, Meyer-Lindenberg A, Murphy D, Rolls E, Saletu B, Spedding M, Sweeney J, Whittington M, Young LJ (2012) Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov 11:141–168CrossRefPubMedGoogle Scholar
  46. Mineur YS, Einstein EB, Bentham MP, Wigestrand MB, Blakeman S, Newbold SA, Picciotto MR (2015) Expression of the 5-HT1A serotonin receptor in the hippocampus is required for social stress resilience and the antidepressant-like effects induced by the nicotinic partial agonist cytisine. Neuropsychopharmacology 40:938–946CrossRefPubMedGoogle Scholar
  47. Mitra P, Bokil H (2008) Observed brain dynamics. Oxford University Press, New YorkGoogle Scholar
  48. Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T (2000) Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci 20:1568–1574PubMedGoogle Scholar
  49. Ng WX, Lau IY, Graham S, Sim K (2009) Neurobiological evidence for thalamic, hippocampal and related glutamatergic abnormalities in bipolar disorder: a review and synthesis. Neurosci Biobehav Rev 33:336–354CrossRefPubMedGoogle Scholar
  50. Ohashi S, Matsumoto M, Togashi H, Ueno K, Yoshioka M (2003) The serotonergic modulation of synaptic plasticity in the rat hippocampo–medial prefrontal cortex pathway. Neurosci Lett 342:179–182CrossRefPubMedGoogle Scholar
  51. Osipova D, Hermes D, Jensen O (2008) Gamma power is phase-locked to posterior alpha activity. PLoS One 3:e3990CrossRefPubMedPubMedCentralGoogle Scholar
  52. Palu M, Stefanovska A (2003) Direction of coupling from phases of interacting oscillators: an information-theoretic approach. Phys Rev E 67:55201CrossRefGoogle Scholar
  53. Paluš M, Stefanovska A (2003) Direction of coupling from phases of interacting oscillators: an information-theoretic approach. Phys Rev E 67:055201CrossRefGoogle Scholar
  54. Paluš M, Komarek V, Hrncir Z, Sterbova K (2001) Synchronization as adjustment of information rates: detection from bivariate time series. Phys Rev E 63:046211CrossRefGoogle Scholar
  55. Penny WD, Duzel E, Miller KJ, Ojemann JG (2008) Testing for nested oscillation. J Neurosci Methods 174:50–61CrossRefPubMedPubMedCentralGoogle Scholar
  56. Puig MV, Gener T (2015) Serotonin modulation of prefronto-hippocampal rhythms in health and disease. ACS Chem Neurosci 6:1017–1025CrossRefPubMedGoogle Scholar
  57. Puig MV, Gulledge AT (2011) Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol Neurobiol 44:449–464CrossRefPubMedPubMedCentralGoogle Scholar
  58. Puig MV, Watakabe A, Ushimaru M, Yamamori T, Kawaguchi Y (2010) Serotonin modulates fast-spiking interneuron and synchronous activity in the rat prefrontal cortex through 5-HT1A and 5-HT2A receptors. J Neurosci 30:2211–2222CrossRefPubMedGoogle Scholar
  59. Rasheed N, Ahmad A, Pandey CP, Chaturvedi RK, Lohani M, Palit G (2010) Differential response of central dopaminergic system in acute and chronic unpredictable stress models in rats. Neurochem Res 35:22–32CrossRefPubMedGoogle Scholar
  60. Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, el Mestikawy S, Hamon M, Descarries L (2000) Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol 417:181–194CrossRefPubMedGoogle Scholar
  61. Rosenblum MG, Pikovsky AS (2001) Detecting direction of coupling in interacting oscillators. Phys Rev E 64:045202CrossRefGoogle Scholar
  62. Rosenblum MG, Cimponeriu L, Bezerianos A, Patzak A, Mrowka R (2002) Identification of coupling direction: application to cardiorespiratory interaction. Phys Rev E 65:041909CrossRefGoogle Scholar
  63. Sanberg CD, Jones FL, Do VH, Dieguez D Jr, Derrick BE (2006) 5-HT1a receptor antagonists block perforant path-dentate LTP induced in novel, but not familiar, environments. Learn Mem 13:52–62CrossRefPubMedPubMedCentralGoogle Scholar
  64. Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ (2001a) Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci USA 98:301–306CrossRefPubMedGoogle Scholar
  65. Seamans JK, Gorelova N, Durstewitz D, Yang CR (2001b) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 21:3628–3638PubMedGoogle Scholar
  66. Seong HJ, Carter AG (2012) D1 receptor modulation of action potential firing in a subpopulation of layer 5 pyramidal neurons in the prefrontal cortex. J Neurosci 32:10516–10521CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sharp T, Bramwell SR, Grahame-Smith DG (1989) 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br J Pharmacol 96:283–290CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA (2010) Impaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464:763–767CrossRefPubMedPubMedCentralGoogle Scholar
  69. Stevenson CW, Gratton A (2003) Basolateral amygdala modulation of the nucleus accumbens dopamine response to stress: role of the medial prefrontal cortex. Eur J Neurosci 17:1287–1295CrossRefPubMedGoogle Scholar
  70. Sui L, Wang F, Li BM (2006) Adult-onset hypothyroidism impairs paired-pulse facilitation and long-term potentiation of the rat dorsal hippocampo-medial prefrontal cortex pathway in vivo. Brain Res 1096:53–60CrossRefPubMedGoogle Scholar
  71. Tierney PL, Thierry AM, Glowinski J, Deniau JM, Gioanni Y (2008) Dopamine modulates temporal dynamics of feedforward inhibition in rat prefrontal cortex in vivo. Cereb Cortex 18:2251–2262CrossRefPubMedGoogle Scholar
  72. Tritsch NX, Sabatini BL (2012) Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76:33–50CrossRefPubMedPubMedCentralGoogle Scholar
  73. Voytek B, Canolty RT, Shestyuk A, Crone NE, Parvizi J, Knight RT (2010) Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front Hum Neurosci 4:191CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wagner T, Axmacher N, Lehnertz K, Elger CE, Fell J (2009) Sleep-dependent directional coupling between human neocortex and hippocampus. Cortex 46:256–263CrossRefPubMedGoogle Scholar
  75. Wang J, O’Donnell P (2001) D(1) dopamine receptors potentiate NMDA-mediated excitability increase in layer V prefrontal cortical pyramidal neurons. Cereb Cortex 11:452–462CrossRefPubMedGoogle Scholar
  76. Xu TX, Yao WD (2010) D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex. Proc Natl Acad Sci USA 107:16366–16371CrossRefPubMedPubMedCentralGoogle Scholar
  77. Xu Y, Ku B, Cui L, Li X, Barish PA, Foster TC, Ogle WO (2007) Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res 1162:9–18CrossRefPubMedGoogle Scholar
  78. Xu X, An L, Mi X, Zhang T (2013) Impairment of cognitive function and synaptic plasticity associated with alteration of information flow in theta and gamma oscillations in melamine-treated rats. PLoS One 8:e77796CrossRefPubMedPubMedCentralGoogle Scholar
  79. Xu X, Liu C, Li Z, Zhang T (2015) Effects of hydrogen sulfide on modulation of theta-gamma coupling in hippocampus in vascular dementia rats. Brain Topogr 28:879–894CrossRefPubMedGoogle Scholar
  80. Young CK (2011) Behavioral significance of hippocampal theta oscillations: looking elsewhere to find the right answers. J Neurophysiol 106:497–499CrossRefPubMedGoogle Scholar
  81. Yuen EY, Jiang Q, Chen P, Gu Z, Feng J, Yan Z (2005) Serotonin 5-HT1A receptors regulate NMDA receptor channels through a microtubule-dependent mechanism. J Neurosci 25:5488–5501CrossRefPubMedGoogle Scholar
  82. Zheng CG, Zhang T (2013) Alteration of phase–phase coupling between theta and gamma rhythms in a depression-model of rats. Cogn Neurodyn 7:167–172CrossRefPubMedGoogle Scholar
  83. Zheng C, Zhang T (2015) Synaptic plasticity–related neural oscillations on hippocampus-prefrontal cortex pathway in depression. Neuroscience 292:170–180CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiaxia Xu
    • 1
  • Chenguang Zheng
    • 1
    • 2
  • Lei An
    • 1
  • Rubin Wang
    • 3
  • Tao Zhang
    • 1
  1. 1.College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of EducationNankai UniversityTianjinPeople’s Republic of China
  2. 2.Center for Learning and MemoryThe University of Texas at AustinAustinUSA
  3. 3.Institute for Cognitive NeurodynamicsEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations