Brain Topography

, Volume 28, Issue 4, pp 606–618 | Cite as

Are Epilepsy-Related fMRI Components Dependent on the Presence of Interictal Epileptic Discharges in Scalp EEG?

  • Petra J. van Houdt
  • Pauly P. W. Ossenblok
  • Albert J. Colon
  • Kees H. M. Hermans
  • Rudolf M. Verdaasdonk
  • Paul A. J. M. Boon
  • Jan C. de Munck
Original Paper


Spatial independent component analysis (ICA) is increasingly being used to extract resting-state networks from fMRI data. Previous studies showed that ICA also reveals independent components (ICs) related to the seizure onset zone. However, it is currently unknown how these epileptic ICs depend on the presence of interictal epileptic discharges (IEDs) in the EEG. The goal of this study was to explore the relation between ICs obtained from fMRI epochs during the occurrence of IEDs in the EEG and those without IEDs. fMRI data sets with co-registered EEG were retrospectively selected of patients from whom the location of the epileptogenic zone was confirmed by outcome of surgery (n = 8). The fMRI data were split into two epochs: one with IEDs visible in scalp EEG and one without. Spatial ICA was applied to the fMRI data of each part separately. The maps of all resulting components were compared to the resection area and the EEG–fMRI correlation pattern by computing a spatial correlation coefficient to detect the epilepsy-related component. For all patients, except one, there was a remarkable resemblance between the epilepsy-related components selected during epochs with IEDs and those without IEDs. These findings suggest that epilepsy-related ICs are not dependent on the presence of IEDs in scalp EEG. Since these epileptic ICs showed partial overlap with resting-state networks of healthy volunteers (n = 10), our study supports the need for new ways to classify epileptic ICs.


Epilepsy Resting-state fMRI EEG–fMRI Independent component analysis Interictal epileptiform discharges Epileptic independent component 



Blood oxygenation level-dependent






EEG–correlated functional MRI


Functional MRI


Independent component analysis


Independent components


Interictal epileptiform discharges



This study is part of the Central Nervous System and Imaging (CSI) project that has received funding from the ENIAC Joint Undertaking (Grant no. 120209). The authors would like to thank Mike van der Mierden, Marlies Dolmans, Ine Keulen for the annotation of the EEG data. Furthermore, we would like to thank Jan Verwoerd from Philips Medical Systems (Best, the Netherlands) for his assistance regarding the MR imaging sequences and Frans Leijten from University Medical Center Utrecht for providing the postoperative MRIs.


  1. Beall EB, Lowe MJ (2010) The non-separability of physiologic noise in functional connectivity MRI with spatial ICA at 3T. J Neurosci Methods 191:263–276PubMedCrossRefGoogle Scholar
  2. Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152PubMedCrossRefGoogle Scholar
  3. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. PNAS 360:1001–1013Google Scholar
  4. Bettus G, Wendling F, Guye M, Valton L, Régis J, Chauvel P, Bartolomei F (2008) Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy Res 81:58–68PubMedCrossRefGoogle Scholar
  5. Bettus G, Guedj E, Joyeux F, Confort-Gouny S, Soulier E, Laguitton V, Cozzone PJ, Chauvel P, Ranjeva J-P, Bartolomei F, Guye M (2009) Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp 30:1580–1591PubMedCrossRefGoogle Scholar
  6. Bettus G, Bartolomei F, Confort-Gouny S, Guedj E, Chauvel P, Cozzone PJ, Ranjeva J-P, Guye M (2010) Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 81:1147–1154PubMedCrossRefGoogle Scholar
  7. Carmichael DW, Thornton JS, Rodionov R, Thornton R, McEvoy AW, Ordidge RJ, Allen PJ, Lemieux L (2010) Feasibility of simultaneous intracranial EEG–fMRI in humans: a safety study. Neuroimage 49:379–390PubMedCrossRefGoogle Scholar
  8. Carmichael DW, Vulliemoz S, Rodionov R, Thornton JS, McEvoy AW, Lemieux L (2012) Simultaneous intracranial EEG–fMRI in humans: protocol considerations and data quality. Neuroimage 63:301–309PubMedCrossRefGoogle Scholar
  9. Carney PW, Masterton RAJ, Harvey AS, Scheffer IE, Berkovic SF, Jackson GD (2010) The core network in absence epilepsy. Differences in cortical and thalamic BOLD response. Neurology 75:904–911PubMedCrossRefGoogle Scholar
  10. Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4:1–8Google Scholar
  11. Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks. PNAS 103:13848–13853PubMedCentralPubMedCrossRefGoogle Scholar
  12. De Martino F, Gentile F, Esposito F, Balsi M, Di Salle F, Goebel R, Formisano E (2007) Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers. Neuroimage 34:177–194PubMedCrossRefGoogle Scholar
  13. De Munck JC, Gonçalves SI, Huijboom L, Kuijer JPA, Pouwels PJW, Heethaar RM, Lopes da Silva FH (2007) The hemodynamic response of the alpha rhythm: an EEG/fMRI study. Neuroimage 35:1142–1151PubMedCrossRefGoogle Scholar
  14. De Munck JC, Gonçalves SI, Faes TJC, Kuijer JPA, Pouwels PJW, Heethaar RM, Lopes da Silva FH (2008) A study of the brain’s resting state based on alpha band power, heart rate and fMRI. Neuroimage 42:112–121PubMedCrossRefGoogle Scholar
  15. De Munck JC, van Houdt PJ, Gonçalves SI, van Wegen E, Ossenblok PPW (2013) Novel artefact removal algorithms for co-registered EEG/fMRI based on selective averaging and subtraction. Neuroimage 64:407–415PubMedCrossRefGoogle Scholar
  16. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878PubMedCrossRefGoogle Scholar
  17. Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162–167PubMedCrossRefGoogle Scholar
  18. Grouiller F, Thornton RC, Groening K, Spinelli L, Duncan JS, Schaller K, Siniatchkin M, Lemieux L, Seeck M, Michel CM, Vulliemoz S (2011) With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging. Brain 134:2867–2886PubMedCentralPubMedCrossRefGoogle Scholar
  19. Heller R, Stanley D, Yekutieli D, Rubin N, Benjamini Y (2006) Cluster-based analysis of FMRI data. Neuroimage 33:599–608PubMedCrossRefGoogle Scholar
  20. Hunyadi B, Tousseyn S, Mijović B, Dupont P, Van Huffel S, Van Paesschen W, De Vos M (2013) ICA extracts epileptic sources from fMRI in EEG-negative patients: a retrospective validation study. PLoS One 8:e78796PubMedCentralPubMedCrossRefGoogle Scholar
  21. LeVan P, Gotman J (2009) Independent component analysis as a model-free approach for the detection of BOLD changes related to epileptic spikes: a simulation study. Hum Brain Mapp 30:2021–2031PubMedCentralPubMedCrossRefGoogle Scholar
  22. LeVan P, Tyvaert L, Moeller F, Gotman J (2010) Independent component analysis reveals dynamic ictal BOLD responses in EEG–fMRI data from focal epilepsy patients. Neuroimage 49:366–378PubMedCentralPubMedCrossRefGoogle Scholar
  23. Lopes R, Lina JM, Fahoum F, Gotman J (2012) Detection of epileptic activity in fMRI without recording the EEG. Neuroimage 60:1867–1879PubMedCentralPubMedCrossRefGoogle Scholar
  24. Luo C, Li Q, Lai Y, Xia Y, Qin Y, Liao W, Li S, Zhou D, Yao D, Gong Q (2011) Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study. Hum Brain Mapp 32:438–449PubMedCrossRefGoogle Scholar
  25. McGill ML, Devinsky O, Kelly C, Milham M, Castellanos FX, Quinn BT, DuBois J, Young JR, Carlson C, French J, Kuzniecky R, Halgren E, Thesen T (2012) Default mode network abnormalities in idiopathic generalized epilepsy. Epilepsy Behav 23:353–359PubMedCentralPubMedCrossRefGoogle Scholar
  26. McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188PubMedCrossRefGoogle Scholar
  27. Moeller F, Maneshi M, Pittau F, Gholipour T, Bellec P, Dubeau F, Grova C, Gotman J (2011) Functional connectivity in patients with idiopathic generalized epilepsy. Epilepsia 52:515–522PubMedCentralPubMedCrossRefGoogle Scholar
  28. Negishi M, Martuzzi R, Novotny EJ, Spencer DD, Constable RT (2011) Functional MRI connectivity as a predictor of the surgical outcome of epilepsy. Epilepsia 52:1733–1740PubMedCentralPubMedCrossRefGoogle Scholar
  29. Ortega GJ, Menendez de la Prida L, Sola RG, Pastor J (2008) Synchronization clusters of interictal activity in the lateral temporal cortex of epileptic patients: intraoperative electrocorticographic analysis. Epilepsia 49:269–280PubMedCrossRefGoogle Scholar
  30. Rodionov R, De Martino F, Laufs H, Carmichael DW, Formisano E, Walker M, Duncan JS, Lemieux L (2007) Independent component analysis of interictal fMRI in focal epilepsy: comparison with general linear model-based EEG–correlated fMRI. Neuroimage 38:488–500PubMedCrossRefGoogle Scholar
  31. Rummel C, Verma RK, Schöpf V, Abela E, Hauf M, Berruecos JFZ, Wiest R (2013) Time course based artifact identification for independent components of resting-state FMRI. Front Hum Neurosci 7:214PubMedCentralPubMedCrossRefGoogle Scholar
  32. Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM (2014) Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90:449–468PubMedCentralPubMedCrossRefGoogle Scholar
  33. Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD (2012) Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex 22:158–165PubMedCentralPubMedCrossRefGoogle Scholar
  34. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045PubMedCentralPubMedCrossRefGoogle Scholar
  35. Thomas CG, Harshman RA, Menon RS (2002) Noise reduction in BOLD-based fMRI using component analysis. Neuroimage 17:1521–1537PubMedCrossRefGoogle Scholar
  36. Thornton R, Rodionov R, Laufs H, Vulliemoz S, Vaudano A, Carmichael D, Cannadathu S, Guye M, McEvoy A, Lhatoo S, Bartolomei F, Chauvel P, Diehl B, De Martino F, Elwes RDC, Walker MC, Duncan JS, Lemieux L (2010) Imaging haemodynamic changes related to seizures: comparison of EEG-based general linear model, independent component analysis of fMRI and intracranial EEG. Neuroimage 53:196–205PubMedCrossRefGoogle Scholar
  37. Tohka J, Foerde K, Aron AR, Tom SM, Toga AW, Poldrack RA (2008) Automatic independent component labeling for artifact removal in fMRI. Neuroimage 39:1227–1245PubMedCentralPubMedCrossRefGoogle Scholar
  38. Van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DEJ (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp 22:165–178PubMedCrossRefGoogle Scholar
  39. Van Houdt, P.J. (2013). Simultaneous EEG and functional MRI: a noninvasive tool in the presurgical evaluation of focal epilepsy. PhD thesis Free University Amsterdam (ISBN: 978-94-6203-252-1), AmsterdamGoogle Scholar
  40. Van Houdt P, de Munck JC, Zijlmans M, Huiskamp G, Leijten FSS, Boon PAJM, Ossenblok PPW (2010) Comparison of analytical strategies for EEG–correlated fMRI data in patients with epilepsy. Magn Reson Imaging 28:1078–1086PubMedCrossRefGoogle Scholar
  41. Van Houdt PJ, Ossenblok PPW, Colon AJ, Boon PAJM, de Munck JC (2012) A framework to integrate EEG–correlated fMRI and intracerebral recordings. Neuroimage 60:2042–2053PubMedCrossRefGoogle Scholar
  42. Van Houdt PJ, de Munck JC, Leijten FSS, Huiskamp GM, Colon A, Boon PAJM, Ossenblok PPW (2013) EEG–fMRI correlation patterns in the presurgical evaluation of focal epilepsy: a comparison with electrocorticographic data and surgical outcome measures. Neuroimage 75:246–256Google Scholar
  43. Vulliemoz S, Carmichael DW, Rosenkranz K, Diehl B, Rodionov R, Walker MC, McEvoy AW, Lemieux L (2011) Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans. Neuroimage 54:182–190PubMedCrossRefGoogle Scholar
  44. Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD (2006) Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol 59:335–343PubMedCrossRefGoogle Scholar
  45. Zhang Z, Lu G, Zhong Y, Tan Q, Liao W, Chen Z, Shi J, Liu Y (2009a) Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI. J Neurol 256:1705–1713PubMedCrossRefGoogle Scholar
  46. Zhang Z, Lu G, Zhong Y, Tan Q, Yang Z, Liao W, Chen Z, Shi J, Liu Y (2009b) Impaired attention network in temporal lobe epilepsy: a resting FMRI study. Neurosci Lett 458:97–101PubMedCrossRefGoogle Scholar
  47. Zhang Z, Lu G, Zhong Y, Tan Q, Liao W, Wang Z, Wang Z, Li K, Chen H, Liu Y (2010) Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy. Brain Res 1323:152–160PubMedCrossRefGoogle Scholar
  48. Zhang CH, Lu Y, Brinkmann B, Welker K, Worrell G, He B (2014) Lateralization and localization of epilepsy related hemodynamic foci using presurgical fMRI. Clin Neurophysiol. (In press)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Petra J. van Houdt
    • 1
    • 2
  • Pauly P. W. Ossenblok
    • 1
    • 3
  • Albert J. Colon
    • 4
  • Kees H. M. Hermans
    • 1
  • Rudolf M. Verdaasdonk
    • 2
  • Paul A. J. M. Boon
    • 1
  • Jan C. de Munck
    • 2
  1. 1.Department of Research and DevelopmentKempenhaegheHeezeThe Netherlands
  2. 2.Department of Physics and Medical TechnologyVU University Medical CenterAmsterdamThe Netherlands
  3. 3.Department of Clinical PhysicsKempenhaegheHeezeThe Netherlands
  4. 4.Department of NeurologyKempenhaegheHeezeThe Netherlands

Personalised recommendations