Brain Topography

, Volume 28, Issue 4, pp 541–547 | Cite as

Point-Process Deconvolution of fMRI BOLD Signal Reveals Effective Connectivity Alterations in Chronic Pain Patients

  • Guo-Rong Wu
  • Daniele Marinazzo
Original Paper


It is now recognized that important information can be extracted from the brain spontaneous activity, as exposed by recent analysis using a repertoire of computational methods. In this context a novel method, based on a blind deconvolution technique, is used to analyze potential changes due to chronic pain in the brain pain matrix’s effective connectivity. The approach is able to deconvolve the hemodynamic response function from spontaneous neural events, i.e., in the absence of explicit onset timings, and to evaluate information transfer between two regions as a joint probability of the occurrence of such spontaneous events. The method revealed that the chronic pain patients exhibit important changes in the insula’s effective connectivity which can be relevant to understand the overall impact of chronic pain on brain function.


Point process BOLD deconvolution Effective connectivity Granger causality Chronic pain 


  1. Apkarian AV, Sosa Y, Krauss BR, Thomas PS, Fredrickson BE, Levy RE, Harden RN, Chialvo DR (2004) Chronic pain patients are impaired on an emotional decision-making task. Pain 108(1–2):129–136PubMedCrossRefGoogle Scholar
  2. Apkarian AV, Bushnell MC, Treede RD, Zubieta J (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9(4):463–484PubMedCrossRefGoogle Scholar
  3. Apkarian AV, Baliki MN, Geha PY (2009) Towards a theory of chronic pain. Prog Neurobiol 87(2):81–97PubMedCentralPubMedCrossRefGoogle Scholar
  4. Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV (2006) Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 26(47):12,165–73CrossRefGoogle Scholar
  5. Baliki MN, Geha PY, Apkarian AV, Chialvo DR (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28(6):1398–1403PubMedCrossRefGoogle Scholar
  6. Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L, Schnitzer TJ, Fields HL, Apkarian AV (2012) Corticostriatal functional connectivity predicts transition to chronic back pain. Nature Neurosci 15(8):1117–1119PubMedCentralPubMedCrossRefGoogle Scholar
  7. Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imag 23(2):137–152CrossRefGoogle Scholar
  8. Bernhardt BC, Klimecki OM, Leiberg S, Singer T (2013) Structural covariance networks of the dorsal anterior insula predict females’ individual differences in empathic responding. Cerebral Cortex p bht072Google Scholar
  9. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kötter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SARB, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107(10):4734–4739PubMedCentralPubMedCrossRefGoogle Scholar
  10. Boos N, Rieder R, Schade V, Spratt KF, Semmer N, Aebi M (1995) 1995 Volvo Award in clinical sciences. The diagnostic accuracy of magnetic resonance imaging, work perception, and psychosocial factors in identifying symptomatic disc herniations. Spine 20(24):2613–2625PubMedCrossRefGoogle Scholar
  11. Cifre I, Sitges C, Fraiman D, Muñoz MÁ, Balenzuela P, González-Roldán A, Martínez-Jauand M, Birbaumer N, Chialvo DR, Montoya P (2012) Disrupted functional connectivity of the pain network in fibromyalgia. Psychosom Med 74(1):55–62PubMedCrossRefGoogle Scholar
  12. Coghill RC, Talbot JD, Evans AC, Meyer E, Gjedde A, Bushnell MC, Duncan GH (1994) Distributed processing of pain and vibration by the human brain. J Neurosci 14(7):4095–4108PubMedGoogle Scholar
  13. Coghill RC, Sang CN, Maisog JM, Iadarola MJ (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. Journal Neurophysiol 82(4):1934–1943Google Scholar
  14. Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2000) Mapping functionally related regions of brain with functional connectivity MR imaging. Am J Neuroradiol 21(9):1636–1644PubMedGoogle Scholar
  15. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am J Neuroradiol 22(7):1326–1333PubMedGoogle Scholar
  16. Craig AD (2002) How do you feel? interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3(8):655–666PubMedCrossRefGoogle Scholar
  17. Deen B, Pitskel NB, Pelphrey KA (2011) Three systems of insular functional connectivity identified with cluster analysis. Cereb Cortex 21(7):1498–1506PubMedCentralPubMedCrossRefGoogle Scholar
  18. Derbyshire SWG (1999) Meta-Analysis of thirty-four independent samples studied using PET reveals a significantly attenuated central response to noxious stimulation in clinical pain patients 3(4):265–280Google Scholar
  19. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Pro Nat Acad Sci USA 102(27):9673–9678CrossRefGoogle Scholar
  20. Gauthier CJ, Madjar C, Desjardins-Crépeau L, Bellec P, Bherer L, Hoge RD (2013) Age dependence of hemodynamic response characteristics in human functional magnetic resonance imaging. Neurobiol aging 34(5):1469–1485PubMedCrossRefGoogle Scholar
  21. Geweke J (1982) Measurement of linear dependence and feedback between multiple time series. J Am Statist Assoc 77(378):304–313CrossRefGoogle Scholar
  22. Glover GH (1999) Deconvolution of impulse response in event-related bold fmri. Neuroimage 9(4):416–429PubMedCrossRefGoogle Scholar
  23. Handwerker DA, Roopchansingh V, Gonzalez-Castillo J, Bandettini PA (2012) Periodic changes in fmri connectivity. NeuroImage 63(3):1712–1719PubMedCentralPubMedCrossRefGoogle Scholar
  24. Jezzard P, Matthews PM, Smith SM (2003) Functional MRI: An introduction to methods. J Magn Reson Imaging 17:383–383CrossRefGoogle Scholar
  25. Lindquist MA, Wager TD (2007) Validity and power in hemodynamic response modeling: a comparison study and a new approach. Hum brain mapp 28(8):764–784PubMedCentralPubMedCrossRefGoogle Scholar
  26. Peng SL, Dumas JA, Park DC, Liu P, Filbey FM, McAdams CJ, Pinkham AE, Adinoff B, Zhang R, Lu H (2014) Age-related increase of resting metabolic rate in the human brain. NeuroImage doi:
  27. Peters ML, Vlaeyen JWS, Weber WEJ (2005) The joint contribution of physical pathology, pain-related fear and catastrophizing to chronic back pain disability. Pain 113(1–2):45–50PubMedCrossRefGoogle Scholar
  28. Petridou N, Gaudes CC, Dryden IL, Francis ST, Gowland PA (2013) Periods of rest in fMRI contain individual spontaneous events which are related to slowly fluctuating spontaneous activity. Hum Brain mapp 34(6):1319–1329PubMedCrossRefGoogle Scholar
  29. Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis. Clin Neurophysiol 30(5):263–288CrossRefGoogle Scholar
  30. Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage 25(1):230–242PubMedCrossRefGoogle Scholar
  31. Tagliazucchi E, Chialvo DR (2011) The collective brain. In: Grigolini P, West BJ (eds) Decision Making. World Scientific, Singapore, pp 57–80CrossRefGoogle Scholar
  32. Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR (2010) Brain resting state is disrupted in chronic back pain patients. Neurosci Lett 485(1):26–31PubMedCentralPubMedCrossRefGoogle Scholar
  33. Tagliazucchi E, Balenzuela P, Fraiman D, Montoya P, Chialvo DR (2011) Spontaneous BOLD event triggered averages for estimating functional connectivity at resting state. Neurosci Lett 488(2):158–163PubMedCentralPubMedCrossRefGoogle Scholar
  34. Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR (2012) Criticality in large-scale brain fmri dynamics unveiled by a novel point process analysis. Frontiers in Physiology 3(15)Google Scholar
  35. Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K (2011) Effective connectivity: Influence, causality and biophysical modeling. NeuroImage 58(2):339–361PubMedCentralPubMedCrossRefGoogle Scholar
  36. Wu GR, Liao W, Stramaglia S, Ding JR, Chen H, Marinazzo D (2013) A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Med image Anal 17(3):365–374PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of Psychology and Educational Sciences, Department of Data AnalysisGhent UniversityGhentBelgium
  2. 2.Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations