Brain Topography

, Volume 28, Issue 2, pp 261–268 | Cite as

Effect of Changes in Stimulus Site on Activation of the Posterior Parietal Cortex

  • Koya Yamashiro
  • Daisuke Sato
  • Hideaki Onishi
  • Kazuhiro Sugawara
  • Sho Nakazawa
  • Shigeki Kameyama
  • Atsuo Maruyama
Original Paper


A previous functional magnetic resonance imaging study elucidated the specific activity of the inferior parietal lobe (IPL) during a two-point discrimination task compared with that during an intensity discrimination task Akatsuka et al. (Neuroimage 40: 852-858, 2008). If the posterior parietal cortex (PPC), including IPL, is responsible for detecting changes in stimulus sites, PPC activity depends on the level of change at stimulus sites. The aim of this study was to clarify whether a particular site exists that could detect changes in stimulus sites using the oddball paradigm. Somatosensory-evoked magnetic fields were recorded in 10 right-handed subjects. Three oddball conditions were performed by all subjects, with the probability of deviant and standard stimuli being 20 and 80 %, respectively, under all three conditions. Deviant stimuli were always presented to the second digit of the hand and standard stimuli were presented to the first (small deviance: SD) and fifth digits (medium deviance: MD) of the hand and the first digit of the toe (large deviance: LD). Inter-stimulus intervals were set at 500 ms. A brain electrical source analysis showed that activities of areas 1 and 3b elicited by the deviant stimuli were not significantly different among the three conditions. In contrast, PPC activity was significantly greater for LD than for SD and MD. PPC activity tended to increase with greater deviance at stimulus sites, but activities of areas 1 and 3b did not differ. These findings suggest that PPC may have a functional role in automatic change detection systems with regard to deviance of stimulus sites.





This study was supported by a Grant-in-aid for young scientists (B) from the Japan Society for the Promotion of Science (JSPS) and a Grant-in-aid for Advanced Research from Niigata University of Health and Welfare.


  1. Akatsuka K, Wasaka T, Nakata H, Inui K, Hoshiyama M, Kakigi R (2005) Mismatch responses related to temporal discrimination of somatosensory stimulation. Clin Neurophysiol 116:1930–1937CrossRefPubMedGoogle Scholar
  2. Akatsuka K, Wasaka T, Nakata H, Kida T, Hoshiyama M, Tamura Y, Kakigi R (2007a) Objective examination for two-point stimulation using a somatosensory oddball paradigm: an MEG study. Clin Neurophysiol 118:403–411CrossRefPubMedGoogle Scholar
  3. Akatsuka K, Wasaka T, Nakata H, Kida T, Kakigi R (2007b) The effect of stimulus probability on the somatosensory mismatch field. Exp Brain Res 181:607–614CrossRefPubMedGoogle Scholar
  4. Akatsuka K, Noguchi Y, Harada T, Sadato N, Kakigi R (2008) Neural codes for somatosensory two-point discrimination in inferior parietal lobule: an fMRI study. Neuroimage 40:852–858CrossRefPubMedGoogle Scholar
  5. Akiyama LF, Yamashiro K, Inui K, Kakigi R (2011) Automatic cortical responses to sound movement: a magnetoencephalography study. Neurosci Lett 488:183–187CrossRefPubMedGoogle Scholar
  6. Andersen RA (1995) Encoding of intention and spatial location in the posterior parietal cortex. Cereb Cortex 5:457–469CrossRefPubMedGoogle Scholar
  7. Barba C, Frot M, Valeriani M, Tonali P, Mauguiere F (2002) Distinct fronto-central N60 and supra-sylvian N70 middle-latency components of the median nerve SEPs as assessed by scalp topographic analysis, dipolar source modelling and depth recordings. Clin Neurophysiol 113:981–992CrossRefPubMedGoogle Scholar
  8. Chen TL, Babiloni C, Ferretti A, Perrucci MG, Romani GL, Rossini PM, Tartaro A, Del Gratta C (2008) Human secondary somatosensory cortex is involved in the processing of somatosensory rare stimuli: an fMRI study. Neuroimage 40:1765–1771CrossRefPubMedGoogle Scholar
  9. Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 3:277–283CrossRefPubMedGoogle Scholar
  10. Downar J, Mikulis DJ, Davis KD (2003) Neural correlates of the prolonged salience of painful stimulation. Neuroimage 20:1540–1551CrossRefPubMedGoogle Scholar
  11. Forss N, Jousmaki V, Hari R (1995) Interaction between afferent input from fingers in human somatosensory cortex. Brain Res 685:68–76CrossRefPubMedGoogle Scholar
  12. Hari R, Joutsiniemi SL, Sarvas J (1988) Spatial resolution of neuromagnetic records: theoretical calculations in a spherical model. Electroencephalogr Clin Neurophysiol 71:64–72CrossRefPubMedGoogle Scholar
  13. Inui K, Wang X, Tamura Y, Kaneoke Y, Kakigi R (2004) Serial processing in the human somatosensory system. Cereb Cortex 14:851–857CrossRefPubMedGoogle Scholar
  14. Kekoni J, Hamalainen H, Saarinen M, Grohn J, Reinikainen K, Lehtokoski A, Naatanen R (1997) Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans. Biol Psychol 46:125–142CrossRefPubMedGoogle Scholar
  15. Kertzman C, Schwarz U, Zeffiro TA, Hallett M (1997) The role of posterior parietal cortex in visually guided reaching movements in humans. Exp Brain Res 114:170–183CrossRefPubMedGoogle Scholar
  16. Kida T, Nishihira Y, Wasaka T, Nakata H, Sakamoto M (2004) Passive enhancement of the somatosensory P100 and N140 in an active attention task using deviant alone condition. Clin Neurophysiol 115:871–879CrossRefPubMedGoogle Scholar
  17. Kida T, Wasaka T, Inui K, Akatsuka K, Nakata H, Kakigi R (2006) Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement. Neuroimage 32:1355–1364CrossRefPubMedGoogle Scholar
  18. Kida T, Inui K, Wasaka T, Akatsuka K, Tanaka E, Kakigi R (2007) Time-varying cortical activations related to visual-tactile cross-modal links in spatial selective attention. J Neurophysiol 97:3585–3596CrossRefPubMedGoogle Scholar
  19. Knight R (1996) Contribution of human hippocampal region to novelty detection. Nature 383:256–259CrossRefPubMedGoogle Scholar
  20. Mauguiere F, Merlet I, Forss N, Vanni S, Jousmaki V, Adeleine P, Hari R (1997a) Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: location and activation timing of SEF sources. Electroencephalogr Clin Neurophysiol 104:281–289CrossRefPubMedGoogle Scholar
  21. Mauguiere F, Merlet I, Forss N, Vanni S, Jousmaki V, Adeleine P, Hari R (1997b) Activation of a distributed somatosensory cortical network in the human brain: a dipole modelling study of magnetic fields evoked by median nerve stimulation. Part II: effects of stimulus rate, attention and stimulus detection. Electroencephalogr Clin Neurophysiol 104:290–295CrossRefPubMedGoogle Scholar
  22. Naatanen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590CrossRefPubMedGoogle Scholar
  23. Nakata H, Tamura Y, Sakamoto K, Akatsuka K, Hirai M, Inui K, Hoshiyama M, Saitoh Y, Yamamoto T, Katayama Y, Kakigi R (2008) Evoked magnetic fields following noxious laser stimulation of the thigh in humans. Neuroimage 42:858–868CrossRefPubMedGoogle Scholar
  24. Nishitani N, Hari R (2002) Viewing lip forms: cortical dynamics. Neuron 36:1211–1220CrossRefPubMedGoogle Scholar
  25. Omori S, Isose S, Otsuru N, Nishihara M, Kuwabara S, Inui K, Kakigi R (2013) Somatotopic representation of pain in the primary somatosensory cortex (S1) in humans. Clin Neurophysiol 124:1422–1430CrossRefPubMedGoogle Scholar
  26. Otsuru N, Inui K, Yamashiro K, Urakawa T, Keceli S, Kakigi R (2011) Effects of prior sustained tactile stimulation on the somatosensory response to the sudden change of intensity in humans: an magnetoencephalography study. Neuroscience 182:115–124Google Scholar
  27. Pazo-Alvarez P, Cadaveira F, Amenedo E (2003) MMN in the visual modality: a review. Biol Psychol 63:199–236CrossRefPubMedGoogle Scholar
  28. Raij T, McEvoy L, Makela JP, Hari R (1997) Human auditory cortex is activated by omissions of auditory stimuli. Brain Res 745:134–143CrossRefPubMedGoogle Scholar
  29. Restuccia D, Della Marca G, Valeriani M, Leggio MG, Molinari M (2007) Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. Brain 130:276–287Google Scholar
  30. Restuccia D, Zanini S, Cazzagon M, Del Piero I, Martucci L, Della Marca G (2009) Somatosensory mismatch negativity in healthy children. Dev Med Child Neurol 51:991–998CrossRefPubMedGoogle Scholar
  31. Sack AT (2009) Parietal cortex and spatial cognition. Behav Brain Res 202:153–161CrossRefPubMedGoogle Scholar
  32. Shinozaki N, Yabe H, Sutoh T, Hiruma T, Kaneko S (1998) Somatosensory automatic responses to deviant stimuli. Brain Res Cogn Brain Res 7:165–171CrossRefPubMedGoogle Scholar
  33. Spackman LA, Boyd SG, Towell A (2007) Effects of stimulus frequency and duration on somatosensory discrimination responses. Exp Brain Res 177:21–30CrossRefPubMedGoogle Scholar
  34. Supek S, Aine CJ (1993) Simulation studies of multiple dipole neuromagnetic source localization: model order and limits of source resolution. IEEE Trans Biomed Eng 40:529–540CrossRefPubMedGoogle Scholar
  35. Waberski TD, Gobbele R, Darvas F, Schmitz S, Buchner H (2002) Spatiotemporal imaging of electrical activity related to attention to somatosensory stimulation. Neuroimage 17:1347–1357CrossRefPubMedGoogle Scholar
  36. Wegner K, Forss N, Salenius S (2000) Characteristics of the human contra- versus ipsilateral SII cortex. Clin Neurophysiol 111:894–900CrossRefPubMedGoogle Scholar
  37. Wikstrom H, Huttunen J, Korvenoja A, Virtanen J, Salonen O, Aronen H, Ilmoniemi RJ (1996) Effects of interstimulus interval on somatosensory evoked magnetic fields (SEFs): a hypothesis concerning SEF generation at the primary sensorimotor cortex. Electroencephalogr Clin Neurophysiol 100:479–487CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Koya Yamashiro
    • 1
  • Daisuke Sato
    • 1
  • Hideaki Onishi
    • 1
  • Kazuhiro Sugawara
    • 1
  • Sho Nakazawa
    • 1
  • Shigeki Kameyama
    • 2
  • Atsuo Maruyama
    • 1
  1. 1.Institute for Human Movement and Medical Sciences, Niigata University of Health and WelfareNiigataJapan
  2. 2.Department of NeurosurgeryNishi-Niigata Chuo National HospitalNiigataJapan

Personalised recommendations