Skip to main content
Log in

Comparison of the Properties of EEG and MEG in Detecting the Electric Activity of the Brain

  • Review
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Since the detection of the first biomagnetic signals in 1963 there has been continuous discussion on the properties and relative merits of bioelectric and biomagnetic measurements. In this review article it is briefly discussed the early history of this controversy. Then the theory of the independence and interdependence of bioelectric and biomagnetic signals is explained, and a clinical study on ECG and MCG that strongly supports this theory is presented. The spatial resolutions of EEG and MEG are compared in detail, and the issue of the maximum number of electrodes in EEG is also discussed. Finally, some special properties of EEG and MEG methods are described. In brief, the conclusion is that EEG and MEG are only partially independent and their spatial resolutions are about the same. Recording both of them brings some additional information on the bioelectric activity of the brain. These two methods have certain unique properties that make either of them more beneficial in certain applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Ahlfors SP, Han J, Belliveau JW, Hämäläinen MS (2010) Sensitivity of MEG and EEG to source orientation. Brain Topogr 23:227–232

    Article  PubMed  Google Scholar 

  • Ahokas S, Malmivuo J, Kauppinen P (2009) Development of low noise active electrode for high-resolution EEG. In: Dössel O, Schlegel WC (eds) World congress on medical physics and biomedical engineering WC 2009, 7–12 Sept 2009, Munich, Germany. IFMBE Proceedings 25:876–879

  • Bailey JJ, Campbell G, Horton MR, Shrager RI, Willems JL (1998) Determination of statistically significant differences in the performance of ECG diagnosis algorithms: an improved method. J Electrocardiol 21(Suppl):S188–S192

    Google Scholar 

  • Barry WH, Fairbank WM, Harrison DC, Lehrman KH, Malmivuo JAV, Wikswo JP Jr (1977) Measurement of the human magnetic heart vector. Science 198:1159–1162

    Article  PubMed  CAS  Google Scholar 

  • Baule GM, McFee R (1963) Detection of the magnetic field of the heart. Am Heart J 66:95–96

    Article  PubMed  CAS  Google Scholar 

  • BMDP Statistical Software Manual (1990) University of California Press, Berkeley

  • Cohen D (1968) Magnetoencephalography, evidence of magnetic fields produced by alpha-rhythm currents. Science 161:784–786

    Article  PubMed  CAS  Google Scholar 

  • Frank E (1956) An accurate, clinically practical system for spatial vectorcardiography. Circulation 13:737–749

    PubMed  CAS  Google Scholar 

  • Hoekema R, Huiskamp GJM, Wieneke GH, Leijten FSS, van Veelen CWM, van Rijen PC, van Huffelen AC (2001) Measurement of the conductivity of the skull temporarily removed during epilepsy surgery. Biomedizinische Technik, Band 46–Ergänz. b. 2:103–105

    Article  Google Scholar 

  • Lachenbruch PA, Mickey MR (1968) Estimation of error rates in discriminant analysis. Technometrics 10:1–11

    Article  Google Scholar 

  • Liu AK, Dale AM, Belliveau JW (2002) Monte Carlo simulation studies of EEG and MEG localization accuracy. Hum Brain Mapp 16:47–62

    Article  PubMed  CAS  Google Scholar 

  • Malmivuo J (1976) On the detection of the magnetic heart vector—An application of the reciprocity theorem. Thesis, Acta Polytechnica Scandinavia, Electrical Engineering Series, No. 39, 195 p

  • Malmivuo J (1980) Distribution of MEG detector sensitivity: an application of reciprocity. Med Biol Eng Comput 18(4):365–370

    Article  PubMed  CAS  Google Scholar 

  • Malmivuo J, Plonsey R (1995) Bioelectromagnetism—Principles and applications of bioelectric and biomagnetic fields. Oxford University Press, NY www.bem.fi/book

  • Malmivuo JA, Puikkonen J (1987) Sensitivity distribution of multichannel MEG detectors. In: Atsumi K, Kotani M, Ueno S, Katila T, Williamson SJ (eds) Abstract 6th International Conference Biomagnetism, Tokyo, 27–30 August, Tokyo Denki University Press, Tokyo, pp 112–113

  • Malmivuo J, Suihko V (2004) Effect of skull resistivity on the spatial resolutions of EEG and MEG. IEEE Trans Biomed Eng 51(7):1276–1280

    Google Scholar 

  • Malmivuo JA, Wikswo JP, Barry WH, Harrison DC, Fairbank WM (1977) Consistent system of rectangular and spherical coordinates for electrocardiography and magnetocardiography. Med Biol Eng Comput 15(4):413–415

    Article  PubMed  CAS  Google Scholar 

  • Malmivuo J, Oja OS, Nousiainen J (1997a) Finnish Patent No 98267

  • Malmivuo J, Suihko V, Eskola H (1997b) Sensitivity distributions of EEG and MEG measurements. IEEE Trans Biomed Eng BME 44(3):196–208

    Article  CAS  Google Scholar 

  • Malmivuo J, Nousiainen J, Oja OS, Uusitalo A (2002) General solution for the application of magnetocardiography. In: Nowak H, Haueisen J, Giessler F, Huonker R (eds) Proceedings of the BIOMAG 2002, 13th international conference on biomagnetism, Jena, Germany, 10–14 August 2002, pp 546–549

  • Mardia KV, Kent JT, Ribby JM (1989) Multivariate analysis. Academic Press, London

    Google Scholar 

  • Maxwell J (1865) A dynamical theory of the electromagnetic field. Phil Trans R Soc (Lond) 155:459–512

    Article  Google Scholar 

  • Maxwell J (1873) Treatise on electricity and magnetism, Vol 2, Oxford. (Reprint by Dover, New York, 1954)

  • Morse PM, Feshbach H (1953) Methods of theoretical physics. Part I. McGraw-Hill, New York, p 997

    Google Scholar 

  • Nousiainen J, Oja OS, Malmivuo J (1994a) Normal vector magnetocardiogram. I. Correlation with the normal vector ECG. J Electrocardiol 3(221):221–231

    Article  Google Scholar 

  • Nousiainen J, Oja OS, Malmivuo J (1994b) Normal vector magnetocardiogram. II. Effect of constitutional variables. J Electrocardiol 3(233):233–241

    Article  Google Scholar 

  • Oja OS (1993) Vector magnetocardiogram in myocardial disorders. Thesis, University of Tampere, Finland

  • Oja OS, Nousiainen J, Malmivuo J, Uusitalo A (1993) Comparison of the diagnostic performance of magnetocardiography and electrocardiography in anteroseptal and inferior infarctions. In: Proceedings of the 9th International Conference on Biomagnetism, Vienna, pp 324–325

  • Oostendorp TF, Delbeke J, Stegeman DF (2000) The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans Biomed Eng vol IEEE-TBME 47(11):1487–1492

    Article  CAS  Google Scholar 

  • Plonsey R (1972) Capability and limitations of electrocardiography and magnetocardiography. IEEE Trans Biomed Eng BME 19(3):239–244

    Article  CAS  Google Scholar 

  • Plonsey R, Collin R (1961) Principles and applications of electromagnetic fields. McGraw-Hill, New York, p 554

    Google Scholar 

  • Preissl H, Lowery CL, Eswaran H (2004) Fetal magnetoencephalography: current progress and trends. Exp Neurol 190(Suppl 1):S28–S36

    Article  PubMed  Google Scholar 

  • Rush S (1975) On the interdependence of magnetic and electric body surface recordings. IEEE Trans Biomed Eng BME 22:157–167

    Article  CAS  Google Scholar 

  • Rush S, Driscoll DA (1969) EEG-electrode sensitivity—An application of reciprocity. IEEE Trans Biomed Eng BME 16(1):15–22

    Article  CAS  Google Scholar 

  • Ryynänen ORM, Hyttinen JAK, Laarne PH, Malmivuo JA (2004) Effect of electrode density and measurement noise on the spatial resolution of cortical potential distribution. IEEE Trans Biomed Eng 51(9):1547–1554

    Article  PubMed  Google Scholar 

  • Suihko V, Malmivuo J (1993) Half-sensitivity volumes in EEG and MEG measurements. In: Hyttinen J, Malmivuo J (eds) Proceedings of the Second Ragnar Granit symposium: EEG and MEG signal analysis and interpretation, 22–23 Nov 1993, Tampere. Tampere University of Technology, Ragnar Granit Institute, Report 7(6): 11–20

  • Väisänen ORM, Malmivuo JA (2010) Comparison between weighted multielectrode leads and beamformers in improving the SNR of EEG generated by deep EEG sources. In: 29th International Congress of Clinical Neurophysiology, 28 Oct–1 Nov 2010, Kobe, Japan. Clin Neurophysiol 121(Supplement 1)

  • Väisänen J, Wendel K, Seemann G, Malmivuo J, Hyttinen J (2009) Sensitivities of bipolar subcutaneous and cortical EEG leads. In: Dössel O, Schlegel W (eds) IFMBE Proceedings, Vol 25. Munich, Germany: World Congress 2009, pp 267–270

  • Välkky T (2010) Active markers in photogrammetric positioning of EEG electrodes. Master of Science Thesis, Tampere University of Technology

  • Wendel K, Väisänen J, Seemann G, Hyttinen J, Malmivuo J (2010) The influence of age and skull conductivity on surface and subdermal bipolar EEG leads. Comput Intell Neurosci 2010(397272):1–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaakko Malmivuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malmivuo, J. Comparison of the Properties of EEG and MEG in Detecting the Electric Activity of the Brain. Brain Topogr 25, 1–19 (2012). https://doi.org/10.1007/s10548-011-0202-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-011-0202-1

Keywords

Navigation