Brain Topography

, Volume 25, Issue 1, pp 1–19 | Cite as

Comparison of the Properties of EEG and MEG in Detecting the Electric Activity of the Brain

  • Jaakko Malmivuo


Since the detection of the first biomagnetic signals in 1963 there has been continuous discussion on the properties and relative merits of bioelectric and biomagnetic measurements. In this review article it is briefly discussed the early history of this controversy. Then the theory of the independence and interdependence of bioelectric and biomagnetic signals is explained, and a clinical study on ECG and MCG that strongly supports this theory is presented. The spatial resolutions of EEG and MEG are compared in detail, and the issue of the maximum number of electrodes in EEG is also discussed. Finally, some special properties of EEG and MEG methods are described. In brief, the conclusion is that EEG and MEG are only partially independent and their spatial resolutions are about the same. Recording both of them brings some additional information on the bioelectric activity of the brain. These two methods have certain unique properties that make either of them more beneficial in certain applications.


Electroencephalography Magnetoencephalography Independence Interdependence Spatial resolution 


  1. Ahlfors SP, Han J, Belliveau JW, Hämäläinen MS (2010) Sensitivity of MEG and EEG to source orientation. Brain Topogr 23:227–232PubMedCrossRefGoogle Scholar
  2. Ahokas S, Malmivuo J, Kauppinen P (2009) Development of low noise active electrode for high-resolution EEG. In: Dössel O, Schlegel WC (eds) World congress on medical physics and biomedical engineering WC 2009, 7–12 Sept 2009, Munich, Germany. IFMBE Proceedings 25:876–879Google Scholar
  3. Bailey JJ, Campbell G, Horton MR, Shrager RI, Willems JL (1998) Determination of statistically significant differences in the performance of ECG diagnosis algorithms: an improved method. J Electrocardiol 21(Suppl):S188–S192Google Scholar
  4. Barry WH, Fairbank WM, Harrison DC, Lehrman KH, Malmivuo JAV, Wikswo JP Jr (1977) Measurement of the human magnetic heart vector. Science 198:1159–1162PubMedCrossRefGoogle Scholar
  5. Baule GM, McFee R (1963) Detection of the magnetic field of the heart. Am Heart J 66:95–96PubMedCrossRefGoogle Scholar
  6. BMDP Statistical Software Manual (1990) University of California Press, BerkeleyGoogle Scholar
  7. Cohen D (1968) Magnetoencephalography, evidence of magnetic fields produced by alpha-rhythm currents. Science 161:784–786PubMedCrossRefGoogle Scholar
  8. Frank E (1956) An accurate, clinically practical system for spatial vectorcardiography. Circulation 13:737–749PubMedGoogle Scholar
  9. Hoekema R, Huiskamp GJM, Wieneke GH, Leijten FSS, van Veelen CWM, van Rijen PC, van Huffelen AC (2001) Measurement of the conductivity of the skull temporarily removed during epilepsy surgery. Biomedizinische Technik, Band 46–Ergänz. b. 2:103–105CrossRefGoogle Scholar
  10. Lachenbruch PA, Mickey MR (1968) Estimation of error rates in discriminant analysis. Technometrics 10:1–11CrossRefGoogle Scholar
  11. Liu AK, Dale AM, Belliveau JW (2002) Monte Carlo simulation studies of EEG and MEG localization accuracy. Hum Brain Mapp 16:47–62PubMedCrossRefGoogle Scholar
  12. Malmivuo J (1976) On the detection of the magnetic heart vector—An application of the reciprocity theorem. Thesis, Acta Polytechnica Scandinavia, Electrical Engineering Series, No. 39, 195 pGoogle Scholar
  13. Malmivuo J (1980) Distribution of MEG detector sensitivity: an application of reciprocity. Med Biol Eng Comput 18(4):365–370PubMedCrossRefGoogle Scholar
  14. Malmivuo J, Plonsey R (1995) Bioelectromagnetism—Principles and applications of bioelectric and biomagnetic fields. Oxford University Press, NY
  15. Malmivuo JA, Puikkonen J (1987) Sensitivity distribution of multichannel MEG detectors. In: Atsumi K, Kotani M, Ueno S, Katila T, Williamson SJ (eds) Abstract 6th International Conference Biomagnetism, Tokyo, 27–30 August, Tokyo Denki University Press, Tokyo, pp 112–113Google Scholar
  16. Malmivuo J, Suihko V (2004) Effect of skull resistivity on the spatial resolutions of EEG and MEG. IEEE Trans Biomed Eng 51(7):1276–1280Google Scholar
  17. Malmivuo JA, Wikswo JP, Barry WH, Harrison DC, Fairbank WM (1977) Consistent system of rectangular and spherical coordinates for electrocardiography and magnetocardiography. Med Biol Eng Comput 15(4):413–415PubMedCrossRefGoogle Scholar
  18. Malmivuo J, Oja OS, Nousiainen J (1997a) Finnish Patent No 98267Google Scholar
  19. Malmivuo J, Suihko V, Eskola H (1997b) Sensitivity distributions of EEG and MEG measurements. IEEE Trans Biomed Eng BME 44(3):196–208CrossRefGoogle Scholar
  20. Malmivuo J, Nousiainen J, Oja OS, Uusitalo A (2002) General solution for the application of magnetocardiography. In: Nowak H, Haueisen J, Giessler F, Huonker R (eds) Proceedings of the BIOMAG 2002, 13th international conference on biomagnetism, Jena, Germany, 10–14 August 2002, pp 546–549Google Scholar
  21. Mardia KV, Kent JT, Ribby JM (1989) Multivariate analysis. Academic Press, LondonGoogle Scholar
  22. Maxwell J (1865) A dynamical theory of the electromagnetic field. Phil Trans R Soc (Lond) 155:459–512CrossRefGoogle Scholar
  23. Maxwell J (1873) Treatise on electricity and magnetism, Vol 2, Oxford. (Reprint by Dover, New York, 1954)Google Scholar
  24. Morse PM, Feshbach H (1953) Methods of theoretical physics. Part I. McGraw-Hill, New York, p 997Google Scholar
  25. Nousiainen J, Oja OS, Malmivuo J (1994a) Normal vector magnetocardiogram. I. Correlation with the normal vector ECG. J Electrocardiol 3(221):221–231CrossRefGoogle Scholar
  26. Nousiainen J, Oja OS, Malmivuo J (1994b) Normal vector magnetocardiogram. II. Effect of constitutional variables. J Electrocardiol 3(233):233–241CrossRefGoogle Scholar
  27. Oja OS (1993) Vector magnetocardiogram in myocardial disorders. Thesis, University of Tampere, FinlandGoogle Scholar
  28. Oja OS, Nousiainen J, Malmivuo J, Uusitalo A (1993) Comparison of the diagnostic performance of magnetocardiography and electrocardiography in anteroseptal and inferior infarctions. In: Proceedings of the 9th International Conference on Biomagnetism, Vienna, pp 324–325Google Scholar
  29. Oostendorp TF, Delbeke J, Stegeman DF (2000) The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans Biomed Eng vol IEEE-TBME 47(11):1487–1492CrossRefGoogle Scholar
  30. Plonsey R (1972) Capability and limitations of electrocardiography and magnetocardiography. IEEE Trans Biomed Eng BME 19(3):239–244CrossRefGoogle Scholar
  31. Plonsey R, Collin R (1961) Principles and applications of electromagnetic fields. McGraw-Hill, New York, p 554Google Scholar
  32. Preissl H, Lowery CL, Eswaran H (2004) Fetal magnetoencephalography: current progress and trends. Exp Neurol 190(Suppl 1):S28–S36PubMedCrossRefGoogle Scholar
  33. Rush S (1975) On the interdependence of magnetic and electric body surface recordings. IEEE Trans Biomed Eng BME 22:157–167CrossRefGoogle Scholar
  34. Rush S, Driscoll DA (1969) EEG-electrode sensitivity—An application of reciprocity. IEEE Trans Biomed Eng BME 16(1):15–22CrossRefGoogle Scholar
  35. Ryynänen ORM, Hyttinen JAK, Laarne PH, Malmivuo JA (2004) Effect of electrode density and measurement noise on the spatial resolution of cortical potential distribution. IEEE Trans Biomed Eng 51(9):1547–1554PubMedCrossRefGoogle Scholar
  36. Suihko V, Malmivuo J (1993) Half-sensitivity volumes in EEG and MEG measurements. In: Hyttinen J, Malmivuo J (eds) Proceedings of the Second Ragnar Granit symposium: EEG and MEG signal analysis and interpretation, 22–23 Nov 1993, Tampere. Tampere University of Technology, Ragnar Granit Institute, Report 7(6): 11–20Google Scholar
  37. Väisänen ORM, Malmivuo JA (2010) Comparison between weighted multielectrode leads and beamformers in improving the SNR of EEG generated by deep EEG sources. In: 29th International Congress of Clinical Neurophysiology, 28 Oct–1 Nov 2010, Kobe, Japan. Clin Neurophysiol 121(Supplement 1)Google Scholar
  38. Väisänen J, Wendel K, Seemann G, Malmivuo J, Hyttinen J (2009) Sensitivities of bipolar subcutaneous and cortical EEG leads. In: Dössel O, Schlegel W (eds) IFMBE Proceedings, Vol 25. Munich, Germany: World Congress 2009, pp 267–270Google Scholar
  39. Välkky T (2010) Active markers in photogrammetric positioning of EEG electrodes. Master of Science Thesis, Tampere University of TechnologyGoogle Scholar
  40. Wendel K, Väisänen J, Seemann G, Hyttinen J, Malmivuo J (2010) The influence of age and skull conductivity on surface and subdermal bipolar EEG leads. Comput Intell Neurosci 2010(397272):1–7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringTampere University of TechnologyTampereFinland
  2. 2.HelsinkiFinland

Personalised recommendations