Brain Topography

, Volume 25, Issue 2, pp 136–156 | Cite as

Modeling of the Neurovascular Coupling in Epileptic Discharges

  • Nicole Voges
  • Solenna Blanchard
  • Fabrice Wendling
  • Olivier David
  • Habib Benali
  • Théodore Papadopoulo
  • Maureen Clerc
  • Christian Bénar
Original Paper


Despite the interest in simultaneous EEG-fMRI studies of epileptic spikes, the link between epileptic discharges and their corresponding hemodynamic responses is poorly understood. In this context, biophysical models are promising tools for investigating the mechanisms underlying observed signals. Here, we apply a metabolic-hemodynamic model to simulated epileptic discharges, in part generated by a neural mass model. We analyze the effect of features specific to epileptic neuronal activity on the blood oxygen level dependent (BOLD) response, focusing on the issues of linearity in neurovascular coupling and on the origin of negative BOLD signals. We found both sub- and supra-linearity in simulated BOLD signals, depending on whether one observes the early or the late part of the BOLD response. The size of these non-linear effects is determined by the spike frequency, as well as by the amplitude of the excitatory activity. Our results additionally indicate a minor deviation from linearity at the neuronal level. According to a phase space analysis, the possibility to obtain a negative BOLD response to an epileptic spike depends on the existence of a long and strong excitatory undershoot. Moreover, we strongly suggest that a combined EEG-fMRI modeling approach should include spatial assumptions. The present study is a step towards an increased understanding of the link between epileptic spikes and their BOLD responses, aiming to improve the interpretation of simultaneous EEG-fMRI recordings in epilepsy.


Epilepsy Non-linear neurovascular coupling Negative BOLD Neural mass model Metabolic hemodynamic models 



This study was supported by a postdoctoral fellowship to N.V. from INRIA Sophia-Antipolis Méditerranée within a collaborative project INSERM-INRIA, ’Institute Technologies de la Santé’, and by the French ’Agence Nationale de la Recherche’ (ANR Blanc 2010, MULTIMODEL Project). CGB wants to thank Monique Esclapez for useful discussions. N.V. would like to thank Johannes Hausmann for fruitful discussions.


  1. Aubert A, Costalat R (2004) A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging. NeuroImage 17:1162–1181CrossRefGoogle Scholar
  2. Babajani A, Soltanian-Zadeh H (2006) Integrated MEG/EEG and fMRI model based on neural mass. IEE Trans Biomed Eng 53(7):1794–1801CrossRefGoogle Scholar
  3. Bagshaw AP, Hawco C, Bénar CG, Kobayashi E, Aghakhani Y, Dubeau F, Pike GB, Gotman J (2005) Analysis of the EEG–fMRI response to prolonged bursts of interictal epileptiform activity. NeuroImage 24:1099–1112PubMedCrossRefGoogle Scholar
  4. Bénar CG, Gross DW, Wang Y, Petre V, Pike B, Dubeau F, Gotman J (2002) The bold response to interictal epileptiform discharges. NeuroImage 17:1182–1192PubMedCrossRefGoogle Scholar
  5. Bénar CG, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, Dubeau F, Gotman J (2006) EEG–fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. NeuroImage 30:1161–1170PubMedCrossRefGoogle Scholar
  6. Birn RM, Bandettini PA (2005) The effect of stimulus duty cycle and off duration on bold response linearity. NeuroImage 27:70–82PubMedCrossRefGoogle Scholar
  7. Blanchard S, Papadopoulo T, Bénar CG, Voges N, Clerc M, Benali H, Warnking J, David O, Wendling F (2011) Relationship between flow and metabolism in bold signals: insights from biophysical models. Brain Topogr 24(1):40–53PubMedCrossRefGoogle Scholar
  8. Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity. Springer, BerlinGoogle Scholar
  9. Brittar RG, Andermann F, Olivier A, Dubeau F, Dumoulin SO, Pike GB, Reutens DC (1999) Interictal spikes increase cerebral glucose metabolism and blood flow: a PET study. Epilepsia 40(2):170–178CrossRefGoogle Scholar
  10. Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. NeuroImage 23(Suppl 1):220–233CrossRefGoogle Scholar
  11. Cosandier-Rimélé D, Merlet I, Badier JM, Chauvel P, Wendling F (2008) The neuronal sources of EEG: modeling of simultaneous scalp and intracerebral recordings in epilepsy. Neuroimage 42(1):135–146PubMedCrossRefGoogle Scholar
  12. Dale AM, Buckner RL (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5:329–340PubMedCrossRefGoogle Scholar
  13. David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. Neuroimage 20(3):1743–1755PubMedCrossRefGoogle Scholar
  14. De Curtis M, Avanzini G (2001) Interictal spikes in focal epileptogenesis. Prog Neurobiol 63(5):541–567PubMedCrossRefGoogle Scholar
  15. Deneux T, Faugeras O (2006) Using nonlinear models in fMRI data analysis: model selection and activation detection. NeuroImage 32:1669–1689PubMedCrossRefGoogle Scholar
  16. Devor A, Dunn AK, Andermann ML, Ulbert I, Boas DA, Dale AM (2003) Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron 39:353–359PubMedCrossRefGoogle Scholar
  17. Ebersole JS (1997) Defining epileptogenic foci: past, present, future. J Clin Neurophysiol 14:470–483PubMedCrossRefGoogle Scholar
  18. Ekstrom A (2010) How and when the fMRI signal relates to underlying neural activity: the danger in dissociation. Brain Res Rev 62(2):233–244PubMedCrossRefGoogle Scholar
  19. Fernandez JM, Martinsda Silva A, Huiskamp G, Velis DN, Manshanden I, de Munck JC, Lopesda Silva F, Cunha JS (2005) What does an epileptiform spike look like in meg? comparison between coincident EEG and MEG spikes. J Clin Neurosci 22:68–73Google Scholar
  20. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRefGoogle Scholar
  21. Glover HG (1999) Deconvolution of impulse responses in event-related bold fMRI. NeuroImage 9:416–429PubMedCrossRefGoogle Scholar
  22. Gotman J, Kobayashi E, Bagshaw AP, Bénar CG, Dubeau F (2006) Combining eeg and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging 23:906–920PubMedCrossRefGoogle Scholar
  23. Grouiller F, Vercueil L, Krainik A, Segebarth C, Kahane P, David O (2010) Characterization of the hemodynamic modes associated with interictal epileptic activity using a deformable model-based analysis of combined EEG and functional MRI recordings. Hum Brain Mapp 31(8):1157–1173PubMedGoogle Scholar
  24. Hamandi K, Laufs H, Noth U, Carmichel DW, Duncan JS, Lemieux L (2008) Bold and perfusion changes during epileptic generalized spike wave activity. NeuroImage 39:608–618PubMedCrossRefGoogle Scholar
  25. Jacobs J, Hawco C, Kobayashi E, Boor R, LeVan P, Stephani U, Siniatchkin M, Gotman J (2008) Variability of the hemodynamic response as a function of age and frequency of epileptic discharge in children with epilepsy. Neuroimage 40(2):601–614PubMedCrossRefGoogle Scholar
  26. Jacobs J, Levan P, Moeller F, Boor R, Stephani U, Gotman J, Siniatchkin M (2009) Hemodynamic changes preceding the interictal EEG spike in patients with focal epilepsy investigated using simultaneous EEG–fMRI. Neuroimage 45(4):1220–1231PubMedCrossRefGoogle Scholar
  27. Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73:357–366PubMedCrossRefGoogle Scholar
  28. Jirsa VK, Jantzen KJ, Fuchs A, Kelso JA (2002) Spatiotemporal forward solution of the EEG and MEG using network modeling. IEEE Trans Med Imaging 21(5):493–504PubMedCrossRefGoogle Scholar
  29. Kisvarday ZF, Eysel UT (1993) Functional and structural topography of horizontal inhibitory connections in cat visual cortex. Europ J Neurosci 5:155–1572CrossRefGoogle Scholar
  30. Kobayashi E, Bagshaw AP, Grova C, Dubeau F, Gotman J (2006) Negative bold responses to epileptic spikes. Hum Brain Mapp 27:488–497PubMedCrossRefGoogle Scholar
  31. Lemieux L, Salek-Haddadi A, Josephs O, Allen P, Toms N, Scott C, Krakow K, Turner R, Fish DR (2001) Event-related fmri with simultaneous and continuous EEG: description of the method and initial case report. NeuroImage 14(3):780–787PubMedCrossRefGoogle Scholar
  32. LeVan P, Tyvaert L, Gotman J (2009) Modulation by EEG features of bold responses to interictal epileptiform discharges. NeuroImage 50(1):15–26PubMedCrossRefGoogle Scholar
  33. Liu Z, Rios C, Zhang N, Yang L, Chen W, He B (2010) Linear and nonlinear relationships between visual stimuli, EEG and bold fMRI signals. NeuroImage 50:1054–1066PubMedCrossRefGoogle Scholar
  34. Logothetis NK, Paulus J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(12):150–157PubMedCrossRefGoogle Scholar
  35. Logothetis NK, Wandell BA (2004) Interpreting the bold signal. Ann Rev Physiol 66:735–769CrossRefGoogle Scholar
  36. McDonald CT, Burkhalter A (1993) Organization of long-range inhibitory connections with rat visual cortex. J Neurosci 13:768–781PubMedGoogle Scholar
  37. Meier R, Kumar A, Schulze-Bonhage A, Aertsen A (2007) Comparison of dynamical states of random networks with human EEG. Neurocomputing 70:1843–1847CrossRefGoogle Scholar
  38. Mirsattari SM, Wang Z, Ives JR, Bihari F, Leung LS, Bartha R, Menon RS (2006) Linear aspects of transformation from interictal epileptic discharges to bold fMRI signals in an animal model of occipital epilepsy. Neuroimage 30:1133–1148PubMedCrossRefGoogle Scholar
  39. Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R (2005) Coupling between neuronal firing, field potentials, and fmri in human auditory cortex. Science 309(5736):951–954PubMedCrossRefGoogle Scholar
  40. Nemoto M, Sheth S, Guiou M, Pouratian N, Chen JWY, Toga AW (2004) Functional signal- and paradigm-dependent linear relationships between synaptic activity and hemodynamic responses in rat somatosensory cortex. J Neurosci 24(15):3850–3861PubMedCrossRefGoogle Scholar
  41. Nowak R, Santiuste M, Russi A (2009) Toward a definition of MEG spike: parametric description of spikes recorded simultaneously by MEG and depth electrodes. Seizure 18:652–655PubMedCrossRefGoogle Scholar
  42. Salek-Haddadi A, Diehl B, Hamandi K, Merschhemke M, Liston A, Friston K, Duncan JS, Fish DR, Lemieux L (2006) Hemodynamic correlates of epileptiform discharges: an EEG–fMRI study of 63 patients with focal epilepsy. Brain Res 1088:148–166PubMedCrossRefGoogle Scholar
  43. Schwartz TH, Bonhoeffer T (2001) In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nat Med 7(9):1063–1067PubMedCrossRefGoogle Scholar
  44. Sheth SA, Nemoto M, Guiou M, Walker M, Pouratian N, Toga AW (2004) Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron 42:347–355PubMedCrossRefGoogle Scholar
  45. Shmuel A, Yacoub E, Pfeuffer J, Vande Moortele JF, Adriany G, Hu X, Ugurbil K (2002) Sustained negative bold, blood flow and oxygen consumption responses and its coupling to the positive responses in the human brain. Neuron 36:1195–1210PubMedCrossRefGoogle Scholar
  46. Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional fmri response correlates with decreases in neuronal activity in monkey visual area v1. Nat Neorosci 9(4):569–577CrossRefGoogle Scholar
  47. Sotero RC, Trujillo-Barreto NJ (2007) Modeling the role of excitatory and inhibitory activity in the generation of the bold signal. NeuroImage 35:149–165PubMedCrossRefGoogle Scholar
  48. Sotero RC, Trujillo-Barreto NJ (2008) Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism. Neuroimage 39:290–309PubMedCrossRefGoogle Scholar
  49. Stefanovic B, Warnking JM, Kobayashi E, Bagshaw AP, Hawco C, Dubeau F, Gotman J, Pike GB (2005) Hemodynamic and metabolic responses to activation and deactivation and epileptic discharges. Neuroimage 28:205–215PubMedCrossRefGoogle Scholar
  50. Talairach J, Bancaud J, Szikla G (1974) New approach to the neurosurgery of epilepsy. Stereotaxic methodology and therapeutic results. Neurochirurgie 20:11–240Google Scholar
  51. Tao JX, Ray A, Hawes-Ebersole S, Ebersole JS (2005) Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia 46(5):669–676PubMedCrossRefGoogle Scholar
  52. Vanzetta I, Flynn C, Ivanov A, Bernard C, Bénar CG (2010) Investigation of linear coupling between single-event blood flow responses and interictal discharges in a model of experimental epilepsy. J Neurophysiol 103(6):3139–3152PubMedCrossRefGoogle Scholar
  53. Voges N, Perrinet L (2009) Phase space analysis of networks based on biologically realistic parameters. J Phys Paris 104:51–60Google Scholar
  54. Voges N, Schüz A, Aertsen A, Rotter S (2010) A modeler’s view on the spatial structure of intrinsic horizontal connectivity in the neocortex. Prog Neurobiol 92(3):277–292PubMedCrossRefGoogle Scholar
  55. Vulliemoz S, Carmichael D, Rosenkranz K, Diehl B, Rodionov R, Walker M, McEvoy A, Lemieux L (2011) Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans. Neuroimage 54(1):182–190PubMedCrossRefGoogle Scholar
  56. Wendling F, Bellanger JJ, Bartolomei F, Chauvel P (2000) Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern 83:367–378PubMedCrossRefGoogle Scholar
  57. Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F (2005) Interictal to ictal transition in human tle: insights from a computational model of intracerebral EEG. J Clin Neurophysiol 22(5):343–356PubMedGoogle Scholar
  58. Worsley KJ, Friston KJ (1995) Analysis of fMRI time series revisited-again. Neuroimage 2:173–181PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nicole Voges
    • 1
    • 2
    • 3
  • Solenna Blanchard
    • 4
  • Fabrice Wendling
    • 4
  • Olivier David
    • 5
    • 6
  • Habib Benali
    • 7
    • 8
  • Théodore Papadopoulo
    • 2
  • Maureen Clerc
    • 2
  • Christian Bénar
    • 1
  1. 1.Faculté de MédecineINSERM U751, Aix Marseille UniversityMarseilleFrance
  2. 2.INRIA, Sophia-Antipolis Méditerranée, Athena Project-TeamSophia-AntipolisFrance
  3. 3.Universitäts-AugenklinikFreiburgGermany
  4. 4.INSERM U642, Université de Rennes 1, LTSIRennesFrance
  5. 5.INSERM U836, Grenoble Institut des NeurosciencesUniversity Joseph FourierGrenobleFrance
  6. 6.Neuroradiology Department and MRI UnitUniversity HospitalGrenobleFrance
  7. 7.INSERM U687, CHU Pitié-SalpêtrièreParisFrance
  8. 8.Laboratoire d’Imagerie FonctionnelleUniversité de Paris 6ParisFrance

Personalised recommendations