Brain Topography

, Volume 23, Issue 1, pp 72–81 | Cite as

Abnormal Cortical Network Activation in Human Amnesia: A High-resolution Evoked Potential Study

  • Sandra Barcellona-Lehmann
  • Stéphanie Morand
  • Claire Bindschaedler
  • Louis Nahum
  • Damien Gabriel
  • Armin Schnider
Original Paper


Little is known about how human amnesia affects the activation of cortical networks during memory processing. In this study, we recorded high-density evoked potentials in 12 healthy control subjects and 11 amnesic patients with various types of brain damage affecting the medial temporal lobes, diencephalic structures, or both. Subjects performed a continuous recognition task composed of meaningful designs. Using whole-scalp spatiotemporal mapping techniques, we found that, during the first 200 ms following picture presentation, map configuration of amnesics and controls were indistinguishable. Beyond this period, processing significantly differed. Between 200 and 350 ms, amnesic patients expressed different topographical maps than controls in response to new and repeated pictures. From 350 to 550 ms, healthy subjects showed modulation of the same maps in response to new and repeated items. In amnesics, by contrast, presentation of repeated items induced different maps, indicating distinct cortical processing of new and old information. The study indicates that cortical mechanisms underlying memory formation and re-activation in amnesia fundamentally differ from normal memory processing.


Amnesia Recognition memory Encoding Brain damage Evoked potentials Brain mapping EEG Spatiotemporal analysis 



We thank Stephanie Clarke, Rolf Frischknecht, and Micah Murray for their support and Christoph Michel for helpful comments. The Cartool software was programmed by Denis Brunet; development of the software was supported by the Center for Biomedical Imaging (CIBM) of Geneva and Lausanne. The study was supported by Swiss National Science Foundation grant no. 320000-113436 to A.S.


  1. Brandeis D, Naylor H, Halliday R, Callaway E, Yano L (1992) Scopolamine effects on visual information processing, attention, and event-related potential map latencies. Psychophysiology 29:315–336CrossRefPubMedGoogle Scholar
  2. Carrera E, Bogousslavsky J (2006) The thalamus and behavior: effects of anatomically distinct strokes. Neurology 66:1817–1823CrossRefPubMedGoogle Scholar
  3. Caulo M, Van Hecke J, Toma L, Ferretti A, Tartaro A, Colosimo C, Romani GL, Uncini A (2005) Functional MRI study of diencephalic amnesia in Wernicke-Korsakoff syndrome. Brain 128:1584–1594CrossRefPubMedGoogle Scholar
  4. Curran T, Cleary AM (2003) Using ERPs to dissociate recollection from familiarity in picture recognition. Brain Res Cogn Brain Res 15:191–205CrossRefPubMedGoogle Scholar
  5. Delis DC, Kramer JH, Kaplan E, Ober BA (1987) California verbal learning test: adult version manual. The Psychological Corporation, San Antonio, TXGoogle Scholar
  6. Domalski P, Smith ME, Halgren E (1991) Cross-modal repetition effects on the N4. Psychol Sci 2:173–178CrossRefGoogle Scholar
  7. Doniger GM, Foxe JJ, Schroeder CE, Murray MM, Higgins BA, Javitt DC (2001) Visual perceptual learning in human object recognition areas: a repetition priming study using high-density electrical mapping. Neuroimage 13:305–313CrossRefPubMedGoogle Scholar
  8. Duarte A, Ranganath C, Winward L, Hayward D, Knight RT (2004) Dissociable neural correlates for familiarity and recollection during the encoding and retrieval of pictures. Brain Res Cogn Brain Res 18:255–272CrossRefPubMedGoogle Scholar
  9. Duzel E, Vargha-Khadem F, Heinze HJ, Mishkin M (2001) Brain activity evidence for recognition without recollection after early hippocampal damage. Proc Nat Acad Sci USA 98:8101–8106Google Scholar
  10. Fazio F, Perani D, Gilardi MC, Colombo F, Cappa SF, Vallar G, Bettinardi V, Paulesu E, Alberoni M, Bressi S et al (1992) Metabolic impairment in human amnesia: a PET study of memory networks. J Cereb Blood Flow Metab 12:353–358PubMedGoogle Scholar
  11. Friedman D, Johnson R Jr (2000) Event-related potential (ERP) studies of memory encoding and retrieval: a selective review. Microsc Res Tech 51:6–28CrossRefPubMedGoogle Scholar
  12. Greicius MD, Krasnow B, Boyett-Anderson JM, Eliez S, Schatzberg AF, Reiss AL, Menon V (2003) Regional analysis of hippocampal activation during memory encoding and retrieval: fMRI study. Hippocampus 13:164–174CrossRefPubMedGoogle Scholar
  13. Halgren E, Smith ME (1987) Cognitive evoked potentials as modulatory processes in human memory formation and retrieval. Hum Neurobiol 6:129–139PubMedGoogle Scholar
  14. James C, Morand S, Barcellona-Lehmann S, Michel CM, Schnider A (2008) Neural transition from short- to long-term memory and the medial temporal lobe: a human evoked-potential study. Hippocampus 19:371–378CrossRefGoogle Scholar
  15. Kuwert T, Homberg V, Steinmetz H, Unverhau S, Langen KJ, Herzog H, Feinendegen LE (1993) Posthypoxic amnesia: regional cerebral glucose consumption measured by positron emission tomography. J Neurol Sci 118:10–16CrossRefPubMedGoogle Scholar
  16. Lalouschek W, Goldenberg G, Marterer A, Beisteiner R, Lindinger G, Lang W (1997) Brain/behaviour dissociation on old/new distinction in a patient with amnesic syndrome. Electroencephalogr Clin Neurophysiol 104:222–227CrossRefPubMedGoogle Scholar
  17. Lehmann D (1987) Principals of spatial analysis. In: Gevins A, Rémond A (eds) Handbook of electroencephalography and clinical neurophysiology, vol. 1: methods of analysis of brain electrical and magnetic signals. Elsevier, Amsterdam, pp 309–354Google Scholar
  18. Lehmann S, Morand S, James C, Schnider A (2007) Electrophysiological correlates of deficient encoding in a case of post-anoxic amnesia. Neuropsychologia 45:1757–1766CrossRefPubMedGoogle Scholar
  19. Lim C, Alexander MP, LaFleche G, Schnyer DM, Verfaellie M (2004) The neurological and cognitive sequelae of cardiac arrest. Neurology 63:1774–1778PubMedGoogle Scholar
  20. Mecklinger A, von Cramon DY, Matthes-von Cramon G (1998) Event-related potential evidence for a specific recognition memory deficit in adult survivors of cerebral hypoxia. Brain 121:1919–1935CrossRefPubMedGoogle Scholar
  21. Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R (2004) EEG source imaging. Clin Neurophysiol 115:2195–2222CrossRefPubMedGoogle Scholar
  22. Murray MM, Michel CM, Grave de Peralta R, Ortigue S, Brunet D, Gonzalez Andino S, Schnider A (2004) Rapid discrimination of visual and multisensory memories revealed by electrical neuroimaging. Neuroimage 21:125–135CrossRefPubMedGoogle Scholar
  23. Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20:249–264CrossRefPubMedGoogle Scholar
  24. Olichney JM, Van Petten C, Paller KA, Salmon DP, Iragui VJ, Kutas M (2000) Word repetition in amnesia. Electrophysiological measures of impaired and spared memory. Brain 123:1948–1963CrossRefPubMedGoogle Scholar
  25. Osterrieth PA (1944) Le test de copie d’une figure complexe: Contribution à l’étude de la perception et de la mémoire. Arch Psychol (Geneva) 30:205–220Google Scholar
  26. Papagno C, Rizzo S, Ligori L, Lima J, Riggio A (2003) Memory and executive functions in aneurysms of the anterior communicating artery. J Clin Exp Neuropsychol 25:24–35CrossRefPubMedGoogle Scholar
  27. Reed LJ, Marsden P, Lasserson D, Sheldon N, Lewis P, Stanhope N, Guinan E, Kopelman MD (1999) FDG-PET analysis and findings in amnesia resulting from hypoxia. Memory 7:599–612CrossRefPubMedGoogle Scholar
  28. Reed LJ, Lasserson D, Marsden P, Stanhope N, Stevens T, Bello F, Kingsley D, Colchester A, Kopelman MD (2003) FDG-PET findings in the Wernicke–Korsakoff syndrome. Cortex 39:1027–1045CrossRefPubMedGoogle Scholar
  29. Regard M (1981) Stroop test: Victoria version. University of Victoria, Department of Psychology, Victoria, British Columbia, CanadaGoogle Scholar
  30. Regard M, Strauss E, Knapp P (1982) Children’s production on verbal and non-verbal fluency tasks. Percept Mot Skills 55:839–844PubMedGoogle Scholar
  31. Reitan RM, Wolfson D (1985) The Halstead–Reitan neuropsychological test battery: theory and clinical interpretation. Neuropsychology Press, Tucson, ArizonaGoogle Scholar
  32. Schacter DL, Curran T, Reiman EM, Chen K, Bandy DJ, Frost JT (1999) Medial temporal lobe activation during episodic encoding and retrieval: a PET study. Hippocampus 9:575–581CrossRefPubMedGoogle Scholar
  33. Schnider A (2003) Spontaneous confabulation and the adaptation of thought to ongoing reality. Nat Rev Neurosci 4:662–671CrossRefPubMedGoogle Scholar
  34. Schnider A (2008) The confabulating mind. How the brain creates reality. Oxford University Press, Oxford, New YorkGoogle Scholar
  35. Schnider A, Ptak R (1999) Spontaneous confabulators fail to suppress currently irrelevant memory traces. Nat Neurosci 2:677–681CrossRefPubMedGoogle Scholar
  36. Schnider A, Bassetti C, Schnider A, Gutbrod K, Ozdoba C (1995) Very severe amnesia with acute onset after isolated hippocampal damage due to systemic lupus erythematosus. J Neurol Neurosurg Psychiat 59:644–646CrossRefPubMedGoogle Scholar
  37. Schnider A, von Daniken C, Gutbrod K (1996a) Disorientation in amnesia. A confusion of memory traces. Brain 119:1627–1632CrossRefPubMedGoogle Scholar
  38. Schnider A, von Daniken C, Gutbrod K (1996b) The mechanisms of spontaneous and provoked confabulations. Brain 119:1365–1375CrossRefPubMedGoogle Scholar
  39. Schnider A, Treyer V, Buck A (2000) Selection of currently relevant memories by the human posterior medial orbitofrontal cortex. J Neurosci 20:5880–5884PubMedGoogle Scholar
  40. Schnider A, Valenza N, Morand S, Michel CM (2002) Early cortical distinction between memories that pertain to ongoing reality and memories that don’t. Cereb Cortex 12:54–61CrossRefPubMedGoogle Scholar
  41. Smith ME, Halgren E (1989) Dissociation of recognition memory components following temporal lobe lesions. J Exp Psychol Learn Mem Cogn 15:50–60CrossRefPubMedGoogle Scholar
  42. Snodgrass JG, Vanderwart M (1980) A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J Exp Psychol [Hum Learn] 6:174–215CrossRefGoogle Scholar
  43. Spreen O, Strauss E (1998) A Compendium of neuropsychological tests: administration, norms, and commentary, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  44. Squire LR, Shimamura AP (1986) Characterizing amnesic patients for neurobehavioral study. Behavior Neurosci 100:866–877CrossRefGoogle Scholar
  45. Squire LR, Zola SM (1997) Amnesia, memory and brain systems. Philos Trans R Soc Lond B Biol Sci 352:1663–1673CrossRefPubMedGoogle Scholar
  46. Tsivilis D, Otten LJ, Rugg MD (2001) Context effects on the neural correlates of recognition memory: an electrophysiological study. Neuron 31:497–505CrossRefPubMedGoogle Scholar
  47. Tulving E, Schacter DL (1990) Priming and human memory systems. Science 247:301–306CrossRefPubMedGoogle Scholar
  48. Von Cramon D, Säring W (1982) Störung der Orientierung beim hirnorganischen Psychosyndrom. In: Bente D, Coper H, Kanowski S (eds) Hirnorganische Psychosyndrome im Alter. Springer, Berlin, pp 38–49Google Scholar
  49. Voss JL, Paller KA (2009) An electrophysiological signature of unconscious recognition memory. Nat Neurosci 12:349–355CrossRefPubMedGoogle Scholar
  50. Woodruff CC, Hayama HR, Rugg MD (2006) Electrophysiological dissociation of the neural correlates of recollection and familiarity. Brain Res 1100:125–135CrossRefPubMedGoogle Scholar
  51. Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6:2950–2967PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sandra Barcellona-Lehmann
    • 1
  • Stéphanie Morand
    • 1
  • Claire Bindschaedler
    • 2
  • Louis Nahum
    • 1
  • Damien Gabriel
    • 1
  • Armin Schnider
    • 1
    • 3
  1. 1.Laboratory of Cognitive Neurorehabilitation, Division of Neurorehabilitation, Department of Clinical NeurosciencesUniversity Hospitals and University of GenevaGenevaSwitzerland
  2. 2.Division of Neuropsychology and NeurorehabilitationUniversity HospitalLausanneSwitzerland
  3. 3.Service de NeurorééducationHôpitaux Universitaires de GenèveGeneva 14Switzerland

Personalised recommendations