Brain Topography

, Volume 21, Issue 3–4, pp 177–184 | Cite as

Time-Window-of-Integration (TWIN) Model for Saccadic Reaction Time: Effect of Auditory Masker Level on Visual–Auditory Spatial Interaction in Elevation

Original Paper


Saccadic reaction time (SRT) to a visual target tends to be shorter when auditory stimuli are presented in close temporal and spatial proximity, even when subjects are instructed to ignore the auditory non-target (focused attention paradigm). Previous studies using pairs of visual and auditory stimuli differing in both azimuth and vertical position suggest that the amount of SRT facilitation decreases not with the physical but with the perceivable distance between visual target and auditory non-target. Steenken et al. (Brain Res 1220:150–156, 2008) presented an additional white-noise masker background of three seconds duration. Increasing the masker level had a diametrical effect on SRTs in spatially coincident versus disparate stimulus configurations: saccadic responses to coincident visual–auditory stimuli are slowed down, whereas saccadic responses to disparate stimuli are speeded up. Here we show that the time-window-of-integration model accounts for this observation by variation of a perceivable-distance parameter in the second stage of the model whose value does not depend on stimulus onset asynchrony between target and non-target.


Multisensory integration Saccadic reaction time Auditory masker 



This research was supported by Grants from Deutsche Forschungsgemeinschaft Di 506/8-1 and Di 506/8/-3 and SFB-TR31 (Active Listening).


  1. Bell AH, Corneil BD, Meredith MA, Munoz DP (2001) The influence of stimulus properties on multisensory processing in the awake primate superior colliculus. Can J Exp Psychol 55:123–132PubMedGoogle Scholar
  2. Bell AH, Meredith A, Van Opstal AJ, Munoz DP (2005) Crossmodal integration in the primate superior colliculus underlying the preparation and initiation of saccadic eye movements. J Neurophysiol 93:3659–3673PubMedCrossRefGoogle Scholar
  3. Bell AH, Meredith MA, Van Opstal AJ, Munoz DP (2006) Stimulus intensity modifies saccadic reaction time and visual response latency in the superior colliculus. Exp Brain Res 174(1):53–9PubMedCrossRefGoogle Scholar
  4. Blauert J (1997) The psychophysics of human sound localization 2nd edn. MIT Press, CambridgeGoogle Scholar
  5. Colonius H, Arndt P (2001) A two-stage model for visual–auditory interaction in saccadic latencies. Percept Psychophys 63:126–147PubMedGoogle Scholar
  6. Colonius H, Diederich A (2004) Multisensory interaction in saccadic reaction time: a time-window-of-integration model. J Cogn Neurosci 16:1000–1009PubMedCrossRefGoogle Scholar
  7. Corneil BD, Munoz DP (1996) The influence of auditory and visual distractors on human orienting gaze shifts. J Neurosci 16:8193–8207PubMedGoogle Scholar
  8. Diederich A, Colonius H (2004) Modeling the time course of multisensory interaction in manual and saccadic responses. In: Calvert G, Spence C, Stein BE (eds) Handbook of multisensory processes. MIT Press, CambridgeGoogle Scholar
  9. Diederich A, Colonius H (2007a) Why two “distractors” are better than one: modeling the effect of nontarget auditory and tactile stimuli on visual saccadic reaction time. Exp Brain Res 179:43–54PubMedCrossRefGoogle Scholar
  10. Diederich A, Colonius H (2007b) Modeling spatial effects in visual-tactile saccadic reaction time. Percept Psychophys 69(1):56–67PubMedGoogle Scholar
  11. Diederich A, Colonius H (2008a) Crossmodal interaction in saccadic reaction time: separating multisensory from warning effects in the time window of integration model. Exp Brain Res 186:1-22PubMedCrossRefGoogle Scholar
  12. Diederich A, Colonius H (2008b). When a high-intensity “distractor” is better then a low-intensity one: modeling the effect of an auditory or tactile nontarget stimulus on visual saccadic reaction time. Brain Res 1242:219–230PubMedCrossRefGoogle Scholar
  13. Diederich A, Colonius H, Schomburg A (2008) Assessing age-related multisensory enhancement with the time-window-of-integration model. Neuropsychologia 46:2556–2562PubMedCrossRefGoogle Scholar
  14. Frens MA, van Opstal (1998) Visual–auditory interactions modulate saccade-related activity in monkey superior colliculus. Brain Res Bull 46:211–224PubMedCrossRefGoogle Scholar
  15. Frens MA, Van Opstal AJ, Van der Willigen RF (1995) Spatial and temporal factors determine auditory–visual interactions in human saccadic eye movements. Percept Psychophys 57:802–816PubMedGoogle Scholar
  16. Good MD, Gilkey RH (1996) Sound localization in noise: the effect of signal-to-noise ratio. J Acoust Soc Am 99:1108–1117PubMedCrossRefGoogle Scholar
  17. Harrington LK, Peck CK (1998) Spatial disparity affects visual–auditory interactions in human sensorimotor processing. Exp Brain Res 122:247–252PubMedCrossRefGoogle Scholar
  18. Heuermann H, Colonius H (2001) Spatial and temporal factors in visual–auditory interaction. In: Sommerfeld E, Kompass R, Lachmann T (eds) Proceedings of the 17th meeting of the international society for psychophysics. Pabst Science, Lengerich, pp 118–123Google Scholar
  19. Hughes HC, Reuter-Lorenz PA, Nozawa G, Fendrich R (1994) Visual–auditory interactions in sensorimotor processing: saccades versus manual responses. J Exp Psychol Hum Percept Perform 20: 131–153PubMedCrossRefGoogle Scholar
  20. Hughes HC, Nelson MD, Aronchick DM (1998) Spatial characteristics of visual–auditory summation in human saccades. Vis Res 38:3955–3963PubMedCrossRefGoogle Scholar
  21. Kadunce DC, Vaughan JW, Wallace MT, Benedek G, Stein BE (1997) Mechanisms of within- and cross-modality suppression in the superior colliculus. J Neurophysiol 78:2834–2847PubMedGoogle Scholar
  22. King AJ, Palmer AR (1985) Integration of visual and auditory information in bimodal neurones in the guinea-pig superior colliculus. Exp Brain Res 60:492–500PubMedCrossRefGoogle Scholar
  23. Lewald J, Guski R (2003) Cross-modal perceptual integration of spatially and temporally disparate auditory and visual stimuli. Cogn Brain Res 16:468–478CrossRefGoogle Scholar
  24. Lorenzi C, Gatehouse S, Lever C (1999) Sound localization in normal-hearing listeners. J Acoust Soc Am 99:1810–1820CrossRefGoogle Scholar
  25. Lueck CJ, Crawford TJ, Savage CJ, Kennard C (1990) Auditory–visual interaction in the generation of saccades in man. Exp Brain Res 82:149–157PubMedGoogle Scholar
  26. Ma WJ, Pouget A (2008) Linking neurons to behavior in multisensory perception: a computaitonal review. Brain Res 1242:4–12PubMedCrossRefGoogle Scholar
  27. McIlwain JT (1986) Effect of eye position on saccades evoked electrically from superior colliculus of alert cats. J Neurophysiol 55:97–112PubMedGoogle Scholar
  28. Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 10:3215–3229Google Scholar
  29. Meredith MA, Stein BE (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56:640–662PubMedGoogle Scholar
  30. Meredith MA, Stein BE (1996) Spatial determinants of multisensory integration in cat superior colliculus neurons. J Neurophysiol 75:1843–1857PubMedGoogle Scholar
  31. Middlebrooks JC, Knudsen EI (1984) A neural code for auditory space in the cat’s superior colliculus. J Neurosci 4:2621–2634PubMedGoogle Scholar
  32. Miller J (1982) Divided attention: evidence for coactivation with redundant signals. Cogn Psychol 14:247–279PubMedCrossRefGoogle Scholar
  33. Morein-Zamir S, Soto-Faraco S, Kingstone A (2003) Auditory capture of vision: examining temporal ventriloquism. Cogn Brain Res 17:154–163CrossRefGoogle Scholar
  34. Munoz DP, Fecteau JH (2002) Vying for dominance: dynamic interactions control visual fixation and saccadic initiation in the superior colliculus. Prog Brain Res 140:3–19PubMedCrossRefGoogle Scholar
  35. Munoz DP, Schall JD (2004) Concurrent, distributed control of saccade initiation in the frontal eye field and superior colliculus. In: Hall WC, Moschovakis A (eds) The superior colliculus: new approaches for studying sensorimotor integration. CRC Press, Boca Raton, pp 55–82Google Scholar
  36. Populin LC, Yin TC (2002) Bimodal interactions in the superior colliculus of the behaving cat. J Neurosci 22:2826–2834PubMedGoogle Scholar
  37. Raab DH (1962) Statistical facilitation of simple reaction times. Trans N Y Acad Sci 24:574–590PubMedGoogle Scholar
  38. Rowland BA, Quessy S, Stanford TR, Stein BE (2007) Multisensory integration shortens physiological response latencies. J Neurosci 27(22):5879–5884PubMedCrossRefGoogle Scholar
  39. Rowland BA, Stein BE (2007) Multisensory integration produces an initial response enhancement. Front Integr Neurosci 1:4. doi: 10.3389/neuro.07.004.2007 PubMedCrossRefGoogle Scholar
  40. Sparks DL (1999) Conceptual issues related to the role of the superior colliculus in the control of gaze. Curr Opin Neurobiol 9:698–707PubMedCrossRefGoogle Scholar
  41. Sparks DL, Freedman EG, Chen LL, Gandhi NJ (2001) Cortical and subcortical contributions to coordinated eye and head movements. Vis Res 41:3295–3305PubMedCrossRefGoogle Scholar
  42. Spence C, Squire S (2003) Multisensory integration: maintaining the perception of synchrony. Curr Biol 13:R519–R521PubMedCrossRefGoogle Scholar
  43. Steenken R, Colonius H, Diederich A, Rach S (2008) Visual–auditory interaction in saccadic reaction time: effects of auditory masker level. Brain Res 1220:150–156PubMedCrossRefGoogle Scholar
  44. Stein BE (1998) Neural mechanisms for synthesizing sensory information and producing adaptive behavior. Exp Brain Res 123: 124–135PubMedCrossRefGoogle Scholar
  45. Stein BE, Meredith MA (1993) The merging of the senses. The MIT Press, CambridgeGoogle Scholar
  46. van Atteveldt NM, Formisano E, Blomert L, Goebel R (2007) The effect of temporal asynchrony on the multisensory integration of letters and speech sounds. Cereb Cortex 17(4):962–974PubMedCrossRefGoogle Scholar
  47. Van Opstal AJ, Munoz DP (2004) Auditory–visual interactions subserving primate gaze orienting. In: Calvert G, Spence C, Stein BE (eds) Handbook of multisensory processes, Cambridge, MIT Press, pp 373–393Google Scholar
  48. Wallace MT, Wilkinson LK, Stein BE (1996) Representation and integration of multiple sensory inputs in primate superior colliculus. J Neurophysiol 76:1246–1266PubMedGoogle Scholar
  49. Whitchurch EA, Takahashi TT (2006) Combined auditory and visual stimuli facilitate head saccades in the barn owl (Tyto alba). J Neurophysiol 96:730–745PubMedCrossRefGoogle Scholar
  50. Wightman FL, Kistler DJ (1989) Headphone simulation of free field listening I: stimulus synthesis. J Acoust Soc Am 85:858–867PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of OldenburgOldenburgGermany
  2. 2.Jacobs University BremenBremenGermany

Personalised recommendations