Advertisement

Brain Topography

, Volume 18, Issue 1, pp 27–35 | Cite as

Virtual Pain Stimulation of Allodynia Patients Activates Cortical Representation of Pain and Emotions: A Functional MRI Study

  • Takahiro Ushida
  • Tatsunori Ikemoto
  • Shinichirou Taniguchi
  • Kenji Ishida
  • Yoriko Murata
  • Wasa Ueda
  • Shigeki Tanaka
  • Akio Ushida
  • Toshikazu Tani
Original Article

Summary:

The present study investigated neural correlates of affect processing in allodynia patients (n=8) and healthy controls (n=12) with the aid of virtual tactile stimulation. Whole brain functional magnetic resonance imaging was performed for allodynia patients and healthy volunteers while they were shown a video demonstrating light stimulation of the palm and another stimulation aimed at producing anticipation of palm stimulation. Contrasting with controls, patients displayed activation of the cortical areas related to pain and emotions: prefrontal cortex (Brodmann's area BA 10) and anterior cingulate cortex (BA 24). These findings may indicate involvement of an emotional component of pain perception in all odynia patients.

Key words:

Allodynia fMRI Virtual tactile stimulation Pain Emotions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, Z, Raja, S.N., Wesselmann, U., Fuchs, P.N., Meyer, R.A. and Campbell, J.N. Intradermal injection of norepinephrine evokes pain in patients with sympathetically maintained pain. Pain, 2000, 88: 161–168.CrossRefPubMedGoogle Scholar
  2. Andrew, D. and Greenspan, J.D. Mechanical and heat sensitization and cutaneous nociceptors after peripheral inflammation in the rat. J. Neurophysiol., 1999, 82: 2049–2656.PubMedGoogle Scholar
  3. Apkarian, A.V. Functional magnetic resonance imaging of pain consciousness: cortical networks of pain critically depend on what is implied by “pain”. Curr. Rev. Pain, 1999, 3: 308–315.PubMedGoogle Scholar
  4. Apkarian, A.V., Darbar, A., Krauss, B.R., Gelnar, P.A. and Szeverenyi, N.M. Differentiating cortical areas related to pain perception from stimulus identification: temporal analysis of fMRI activity. J. Neurophysiol., 1999, 81: 2956–2963.PubMedGoogle Scholar
  5. Baliki, M., Al-Amin, H.A., Atweh, S.F., Jaber, M., Hawwa, N., Jabbur, S.J., Apkarian, A.V. and Saade, N.E. Attenuation of neuropathic manifestations by local block of the activities of the ventrolateral orbito-frontal area in the rat. Neuroscience, 2003, 120: 1093–1104.CrossRefPubMedGoogle Scholar
  6. Bushnell, M.C., Duncan, G.H., Dubner, R. and He, L.F. Activity of trigeminothalamic neurons in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. J. Neurophysiol., 1984, 52: 170–187.PubMedGoogle Scholar
  7. Calvert, G.A., Bullmore, E.T., Brammer, M.J., Campbell, R., Williams, S.C., McGuire, P.K., Woodruff, P.W., Iversen, S.D. and David, A.S. Activation of auditory cortex during silent lipreading. Science, 1997, 276: 593–596.CrossRefPubMedGoogle Scholar
  8. Capek, C.M., Bavelier, D., Corina, D., Newman, A.J., Jezzard, P. and Neville, H.J. The cortical organization of audio-visual sentence comprehension: an fMRI study at 4 Tesla. Brain Res. Cogn. Brain Res., 2004, 20: 111–119.CrossRefPubMedGoogle Scholar
  9. Chambers, C.D., Payne, J.M., Stokes, M.G. and Mattingley, J.B. Fast and slow parietal pathways mediate spatial attention. Nat. Neurosci., 2004, 7: 217–218.CrossRefPubMedGoogle Scholar
  10. Foltz, E.L. and White, L.E., Jr. Pain “relief” by frontal cingulumotomy. J. Neurosurg., 1962, 19: 89–100.PubMedGoogle Scholar
  11. Fox, P.T., Mintun, M.A., Reiman, E.M. and Raichle, M.E. Enhanced detection of focal brain responses using intersubject averaging and change-distribution analyis of subtracted PET images. J. Cereb. Blood Flow Metab., 1988, 8: 642–653.PubMedGoogle Scholar
  12. Gingold, S.I., Greenspan, J.D. and Apkarian, A.V. Anatomic evidence of nociceptive inputs to primary somatosensory cortex: relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. J. Comp. Neurol., 1991, 308: 467–490.CrossRefPubMedGoogle Scholar
  13. Grachav, I.D. and Apkarian, A.V. Chemical mapping of anxiety in the brain of healthy humans: an in vivo 1H-MRS study on the effects of sex, age, and brain region. Hum. Brain. Mapp., 2000, 11: 261–272.CrossRefPubMedGoogle Scholar
  14. Grachev, I.D., Fredrickson, B.E. and Apkarian, A.V. Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain, 2000, 89: 7–18.CrossRefPubMedGoogle Scholar
  15. Grantham, E.G. and Spurling, R.G. Selective lobotomy in the treatment of intractable pain. Ann. Surg., 1953, 137: 602–608.PubMedGoogle Scholar
  16. Hurt, R.W. and Ballantine, H.T., Jr. Stereotactic anterior cingulate lesions for persistent pain: a report on 68 cases. Clin. Neurosurg., 1974, 21: 334–351.PubMedGoogle Scholar
  17. Ikemoto, T., Ushida, T., Tanaka, S., Morio, K., Zinchuk, V.S., Tani, T., Taniguchi, S. and Ushida, A. Painful mechanical stimulation evokes activation of distinct functional areas in the brain: comparison of normal subjects and two patients with neuropathic pain. Pain Research, 2003, 18: 137–144.Google Scholar
  18. Maclean, P.D. The limbic system (visceral brain) in relation to central gray and reticulum of the brain stem; evidence of interdependence in emotional processes. Psychosom. Med., 1955, 17: 355–366.PubMedGoogle Scholar
  19. Maihofner, C., Forster, C., Birklein, F., Neundorfer, B. and Handwerker, H.O. Brain processing during mechanical hyperalgesia in complex regional pain syndrome: a functional MRI study. Pain, 2005, 114: 93–103.CrossRefPubMedGoogle Scholar
  20. Milne, R.D., Syngeniotis, A., Jackson, G. and Corballis, M.C. Mixed lateralization of phonological assembly in developmental dyslexia. Neurocase, 2002, 8: 205–209.CrossRefPubMedGoogle Scholar
  21. Rainville, P., Duncan, G.H., Price, D.D., Carrier, B. and Bushnell, M.C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science, 1997, 277: 968–971.CrossRefPubMedGoogle Scholar
  22. Ringler, R., Greiner, M., Kohlloeffel, L., Handwerker, H.O. and Forster, C. BOLD effects in different areas of the cerebral cortex during painful mechanical stimulation. Pain, 2003, 105: 445–453.CrossRefPubMedGoogle Scholar
  23. Saito, D.N., Okada, T., Morita, Y., Yonekura, Y. and Sadato, N. Tactile-visual cross-modal shape matching: a functional MRI study. Brain Res. Cogn. Brain Res., 2003, 17: 14–25.CrossRefPubMedGoogle Scholar
  24. Shi, T., Stevens, R.T., Tessier, J. and Apkarian, A.V. Spinothalamocortical inputs nonpreferentially innervate the superficial and deep cortical layers of SI. Neurosci. Lett., 1993, 160: 209–213.CrossRefPubMedGoogle Scholar
  25. Talairach, J.T.P. Co-planar Stereotaxic Atlas of the Human Brain. Thieme Medical Publishers, New York, 1988.Google Scholar
  26. Talbot, J.D., Marrett, S., Evans, A.C., Meyer, E., Bushnell, M.C. and Duncan, G.H. Multiple representation of pain in human cerebral cortex. Science, 1991, 251: 1355–1358.Google Scholar
  27. Valet, M., Sprenger, T., Boecker, H., Willoch, F., Rummeny, E., Conrad, B., Erhard, P. and Tolha, T.R. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain - an fMRI analysis. Pain, 2004, 109: 399–408.CrossRefPubMedGoogle Scholar
  28. Vogt, B.A., Rosene, D.L. and Pandya, D.N. Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science, 1979, 204: 205–207.PubMedGoogle Scholar
  29. Von Korff, M., Crane, P., Lane, M., Miglioretti, D.L., Simon, G., Saunders, K., Stang, P., Brandenburg, N. and Kessler, R. Chronic spinal pain and physical-mental comorbidity in the United States; results from the national comorbidity survey replication. Pain, 2005, 113: 331–339.CrossRefPubMedGoogle Scholar
  30. Woolf, C.J., Shortland, P. and Coggeshall, R.E. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature, 1992, 355: 75–78.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Takahiro Ushida
    • 1
  • Tatsunori Ikemoto
    • 1
  • Shinichirou Taniguchi
    • 1
  • Kenji Ishida
    • 1
  • Yoriko Murata
    • 2
  • Wasa Ueda
    • 3
  • Shigeki Tanaka
    • 4
  • Akio Ushida
    • 5
  • Toshikazu Tani
    • 1
  1. 1.Department of OrthopaedicsKochi Medical SchoolKochiJapan
  2. 2.Department of RadiologyKochi Medical SchoolKochiJapan
  3. 3.Department of AnesthesiologyKochi Medical SchoolKochiJapan
  4. 4.Department of PsychologyJin-Ai UniversityFukuiJapan
  5. 5.Department of Electric EngineeringUniversity of TokushimaTokushimaJapan

Personalised recommendations