Brain Topography

, Volume 17, Issue 4, pp 207–218 | Cite as

The Influence of Mozart’s Sonata K. 448 on Brain Activity During the Performance of Spatial Rotation and Numerical Tasks

Original Article


The study investigated the influence of Mozart’s music on respondents’ brain activity while solving spatial rotation and numerical tasks. The method of induced event-related desynchronization/synchronization (ERD/ERS) and coherence (ERCoh) was used. The music condition had a beneficial influence on respondents’ performance of spatial rotation tasks, and a slightly negative influence on the performance of numerical tasks as compared with the silence condition. On the psychophysiological level a general effect of Mozart’s music on brain activity in the induced gamma band was observed, accompanied by a more specific effect in the induced lower-2 alpha band which was only present while respondents solved the numerical tasks. It is suggested that listening to Mozart’s music increases the activity of specific brain areas and in that way facilitates the selection and “binding” together of pertinent aspects of sensory stimulus into a perceived whole.

Key words:

Mozart effect Induced gamma-band Even-related desynchronization Event-related coherence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrev, C. Quantification of event-related coherence (ERCoh). In: G. Pfurtscheller and F.H. Lopes da Silva (Eds). Handbook of Electroencephalography and Clinical Neuropsychology, Event-Related Desynchronization, Vol. 6. Elsevier, Amsterdam, 1999: 119–137.Google Scholar
  2. Arikan, M.K., Devrim, M., Oran, O., Inan, S., Elhih, M. and Demirlap, T. Music effects on event-related potentials of humans on the basis of cultural environment. Neurosci. Lett., 1999, 268: 21–24.CrossRefPubMedGoogle Scholar
  3. Auzou, P., Eustache, F., Etevenon, P., Platel, H. Rioux, P., Lambert, J. Lechevalier, B., Zarifian, E. and Baron, J.C. Topographic EEG activations during timbre and pitch discrimination tasks using musical sounds. Neuropsych., 1995, 33: 25–37.CrossRefGoogle Scholar
  4. Basar, E., Basar-Eroglu, C., Krakas, S. and Schürmann, M. Gamma, alpha delta, and theta oscillations govern cognitive processes. Int. J. Psychophys., 2001, 39: 241–248.CrossRefGoogle Scholar
  5. Bhattacharya, J. and Petsche, H. Universality in the brain while listening to music. Proc. R. Soc. Lond., 2001, 268: 2423–2433.CrossRefGoogle Scholar
  6. Bhattacharya, J., Petsche, H. and Pereda, E. Long-range synchrony in the ã band: Role in music perception. J. Neurosci., 2001, 21: 6329–6337.PubMedGoogle Scholar
  7. Burgess, A.P. and Gruzelier, J.H. Methodological advances in the analysis of event-related desynchronization data: reliability and robust analysis. In: G. Pfurtscheller and F.H. Lopes da Silva (Eds.). Handbook of Electroencephalography and Clinical Neuropsychology, Event-Related Desynchronization, Vol. 6. Elsevier, Amsterdam, 1999: 139–158.Google Scholar
  8. Carstens, C.B., Huskins, E. and Hounshell, G.W. Listening to Mozart may not enhance performance on the Revised Minnesota Paper Form Board Test. Psychol. Reports, 1995, 77: 111–114Google Scholar
  9. Cranberg, L.D., and Albert, M.L. The chess mind. In L.K. Obler and D.Fein (Ed.), The Exceptional Brain. The Guilford Press, New York, 1988: 156–190.Google Scholar
  10. Demetriou, A., Christou, C., Spanoudis, G. and Platsidou, M. The development of mental processing: Efficiency, working memory, and thinking. Blackwell Publishing, Oxford, 2002.Google Scholar
  11. Fink, A. and Neubauer, A.C. Extraversion and cortical activation: Effects of task complexity. Pers. Ind. Diff., 2004, 36: 333–347.CrossRefGoogle Scholar
  12. Fink, A., Grabner, R.H., Neuper, C. and Neubauer, A.C. Extraversion and cortical activation during memory performance. Int. J. Psychophys. (in press).Google Scholar
  13. Green, A.J., Easton, R.D., and LaShell, L.S.R. Visual-auditory events: Cross-modal perceptual priming and recognition memory. Consc. Cog., 2001, 10: 425–435.CrossRefGoogle Scholar
  14. Gruber, T., Müller, M.M., Keil and Elbert. Selective visual-spatial attention alerts induced gamma band responses in the human EEG. Clin. Neurophys., 1999, 110: 2074–2085.CrossRefGoogle Scholar
  15. Hughes, J.R., Daaboul, Y., Fino, J.J. and Shaw, G.L. The “Mozart effect” on epilepticform activity. Clin. Electroencephalogr., 1998, 29:109–119PubMedGoogle Scholar
  16. Hughes, J.R. and Fino, J.J. The Mozart effect: distinctive aspects of the music-a clue to brain coding? Clin. Electroencephalogr., 2000, 31: 94–103.PubMedGoogle Scholar
  17. Husain, G., Thompson, W. F. and Schellenberg, E.G. Effects of musical tempo and mode on arousal, mood and spatial abilities. Music Percept., 2002, 20: 151–171.CrossRefGoogle Scholar
  18. Jaušovec, N. and Habe, K. The “Mozart effect”: An electroencephalographic analysis employing the methods of induced event-related desynchronization/synchronization and event-related coherence. Brain Top., 2003, 16: 73–84CrossRefGoogle Scholar
  19. Jaušovec, N. and Habe, K. The influence of auditory background stimulation (Mozart’s sonata K. 448) on visual brain activity. Int. J. Psychophys., 2004, 51: 261–271.CrossRefGoogle Scholar
  20. Klimesch, W. Memory processes, brain oscillations and EEG synchronization. Int. J. Psychophys., 1996, 24: 61–100.CrossRefGoogle Scholar
  21. Klimesch, W. EEG-alpha rhythms and memory processes. Int. J. Psychophys., 1997, 26: 319–340.CrossRefGoogle Scholar
  22. Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Reviews, 1999, 29:169–195CrossRefGoogle Scholar
  23. Leng, X. and Shaw, G.L. Toward a neural theory of higher brain function using music as a window. Conc. Neurosci., 1991, 2: 229–258.Google Scholar
  24. Lopes da Silva, F.H. and Pfurtscheller, G. Basic concepts on EEG synchronization and desynchronization. In: G. Pfurtscheller and F.H. Lopes da Silva (Eds.), Handbook of Electroencephalography and Clinical Neuropsychology, Event-Related Desynchronization, Vol. 6. Elsevier, Amsterdam, 1999: 3–11.Google Scholar
  25. McCutcheon, L.E. Another failure to generalize the Mozart effect. Psychol. Rep., 2000, 87: 325–330.PubMedGoogle Scholar
  26. McGrann, J.V., Shaw, G.L., Shenoy, K.V. Leng, X. and Mathews, R.B. Computation by symmetry operations in a structured model of the brain. Physical Rev., 1994, 49: 5830–5839.Google Scholar
  27. McKelvie, P. and Low, J. Listening to Mozart does not improve children’s spatial ability: Final curtains for the Mozart effect. Brit. J. Dev. Psychol., 2002, 20: 241–285.CrossRefGoogle Scholar
  28. Mihelič, A. Baterija testov sposobnosti BTI Priroènik. Zavod SR Slovenije za produktivnost dela, Ljubljana: 1972.Google Scholar
  29. Nantanis, K.M. and Schellenberg, E.G. The Mozart effect: An artifact of preference. Psychol. Sci., 1999, 10, 370–373.CrossRefGoogle Scholar
  30. Newman, J., Rosenbach, J.H., Burns, K.L., Latimer, B.C., Matocha, H.R. and Vogt, E.R. An experimental test of the Mozart effect: Does listening to his music improve spatial ability? Percept. Motor Skill., 1995, 81: 1379–1387.Google Scholar
  31. Otnes, R.K. and Enochson, L. Applied time series analysis. John Wiley, New York, 1978.Google Scholar
  32. Peterson, M. S.T.A.R. Spatial-Temporal Animation Reasoning. Academic Press, New York: 2000.Google Scholar
  33. Petsche, H. Approaches to verbal, visual and musical creativity by EEG coherence analysis. Int. J. Psychophys., 1996, 24: 145–159.CrossRefGoogle Scholar
  34. Petsche, H., Pockberger, H. and Rappelsberger, P. EEG topography and mental performance. In F.H. Duffy (Eds.), Topographic mapping of brain electrical activity. Butterworths, Stoneham MA, 1986: 63–98.Google Scholar
  35. Petsche, H., Richter, P., Stein, A., Etlinger, S.C. and Filz, O. EEG coherence and musical thinking. Music Percept., 1993, 11: 117–152.Google Scholar
  36. Pfurtscheller, G. Quantification of ERD and ERS in the time domain. In: G. Pfurtscheller and F.H. Lopes da Silva (Eds.), Handbook of electroencephalography and clinical neuropsychology, Vol. 6: Event-related desynchronization. Elsevier, Amsterdam, 1999: 89–105.Google Scholar
  37. Rauscher, F.H., Shaw, G.L. and Ky, K.N. Music and spatial task performance. Nature, 1993, 365: 611.CrossRefGoogle Scholar
  38. Rauscher, F.H., Shaw, G.L. and Ky, K.N. Listening to Mozart enhances spatial temporal reasoning: towards a neurophysiological basis. Neurosci. Lett., 1995,195: 44–47.CrossRefGoogle Scholar
  39. Rauscher, F.H. and Shaw, G.L. Key components of the Mozart effect. Percept. Motor Skill., 1998, 86: 835–841.Google Scholar
  40. Rideout, B.E. and Laubach, C.M. EEG correlates of enhanced spatial performance following exposure to music. Percept. Motor Skill., 1996, 82: 427–432.Google Scholar
  41. Rideout, B.E. and Taylor, J. Enhanced spatial performance following 10 minutes exposure to music: A replication. Percept. Motor Skill., 1997, 85: 112–114.Google Scholar
  42. Rideout, B.E., Dougherty, S. and Wernert, L. Effects of music on spatial task performance: A test of generality. Percept. Motor Skill., 1998, 86: 512–514.Google Scholar
  43. Sarnthein, J., von Stein, A., Rappelsberger, P., Petsche, H., Rauscher, F.H. and Shaw, G.L. Persistent patterns of brain activity: an EEG coherence study of the positive effect of music on spatial-temporal reasoning. Neurol. Res., 1997, 19: 107–116.PubMedGoogle Scholar
  44. Shaw, G.L., Silverman, D.J. and Pearson, J.C. Model of cortical organization embodying a basis for a theory of information processing and memory recall. Proc. Natl. Acad. Sci. USA, 1985, 82: 2364–2368.PubMedGoogle Scholar
  45. Shenoy, K.V., Kaufman, J., McGrann, J.V. and Shaw, L.G. Learning by selection in the Trion model of cortical organization. Cereb. Cortex, 1993, 3: 239–248.PubMedGoogle Scholar
  46. Schreiber, E.H. Influence of music on college students’ achievement. Percept. Motor Skill., 1988, 66:338Google Scholar
  47. Singer, W. and Gray, C.M. Visual feature integration and the temporal correlation hypothesis. A. Rev. Neurosci., 1995, 18: 555–586.CrossRefGoogle Scholar
  48. Spydell, J.D. and Sheer, D.E. Effect of problem solving on right and left hemisphere 40 hertz EEG activity. Psychophys., 1982, 19: 420–425.Google Scholar
  49. Steele, K., Ball, T.N. and Runk, R. Listening to Mozart does not enhance backwards digit span performance. Perceptual and Motor Skills, 1997, 84: 1179–1184.PubMedGoogle Scholar
  50. Steele, K., Ball, T.N. and Runk, R. Listening to Mozart does not enhance backwards digit span performance. Percept. Motor Skill., 1997, 84: 1179–1184.Google Scholar
  51. Steele, K., Brown, J.D. and Stoecker, J.A. Failure to confirm the Rauscher and Shaw description of recovery of the Mozart effect. Percept. Motor Skill., 1999, 88: 843–848.Google Scholar
  52. Tallon-Baudry, C. and Bertrand, O. Oscillatory γ activity in humans and its role in object representation. Trends Neurosci., 1999, 19: 151–162.Google Scholar
  53. Thatcher, R.W., Toro, C., Pflieger, M.E., and Hallet, M. Human neural network dynamics using multimodal registration of EEG, PET and MRI. In: R.W. Thatcher, M. Hallet and T. Zeffiro (Eds.), Functional Neuroimaging: Technical Foundations. Academic Press, Orlando FL, 1994: 259–267.Google Scholar
  54. Thompson, W.F., Schellenberg, E.G. and Husain, G. Arousal, mood, and the Mozart effect. Psychol. Sci., 2001, 12: 248–251.CrossRefPubMedGoogle Scholar
  55. Verstraeten, E. and Cluydts, R. Attentional switching-related human EEG alpha oscillations. Neuroreport, 2002, 13: 681–684.CrossRefPubMedGoogle Scholar
  56. Weiss, S. and Rappelsberger, P. Long-range EEG synchronization during word encoding correlates with successful memory performance. Cog. Brain Res., 2000, 9: 299–312.CrossRefGoogle Scholar
  57. Wilson, T.L. and Brown, T.L. Reexamination of the effect of Mozart’s music on spatial task performance. J. Psychol., 1997, 13: 365–370.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Pedagoška fakultetaUniverza v MariboruMariborSlovenia

Personalised recommendations