The Thermodynamic Structure of Arctic Coastal Fog Occurring During the Melt Season over East Greenland

  • Gaëlle F. Gilson
  • Hester Jiskoot
  • John J. Cassano
  • Ismail Gultepe
  • Timothy D. James
Research Article
  • 45 Downloads

Abstract

An automated method to classify Arctic fog into distinct thermodynamic profiles using historic in-situ surface and upper-air observations is presented. This classification is applied to low-resolution Integrated Global Radiosonde Archive (IGRA) soundings and high-resolution Arctic Summer Cloud Ocean Study (ASCOS) soundings in low- and high-Arctic coastal and pack-ice environments. Results allow investigation of fog macrophysical properties and processes in coastal East Greenland during melt seasons 1980–2012. Integrated with fog observations from three synoptic weather stations, 422 IGRA soundings are classified into six fog thermodynamic types based on surface saturation ratio, type of temperature inversion, fog-top height relative to inversion-base height and stability using the virtual potential temperature gradient. Between 65–80% of fog observations occur with a low-level inversion, and statically neutral or unstable surface layers occur frequently. Thermodynamic classification is sensitive to the assigned dew-point depression threshold, but categorization is robust. Despite differences in the vertical resolution of radiosonde observations, IGRA and ASCOS soundings yield the same six fog classes, with fog-class distribution varying with latitude and environmental conditions. High-Arctic fog frequently resides within an elevated inversion layer, whereas low-Arctic fog is more often restricted to the mixed layer. Using supplementary time-lapse images, ASCOS microwave radiometer retrievals and airmass back-trajectories, we hypothesize that the thermodynamic classes represent different stages of advection fog formation, development, and dissipation, including stratus-base lowering and fog lifting. This automated extraction of thermodynamic boundary-layer and inversion structure can be applied to radiosonde observations worldwide to better evaluate fog conditions that affect transportation and lead to improvements in numerical models.

Keywords

Arctic fog Fog development Greenland Radiosonde observations Temperature inversion 

Notes

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (to HJ), Alberta Innovates Technology Futures (to GFG) and University of Lethbridge funding. Time-lapse imagery was collected by TDJ with support from INTERACT under the European Community’s Seventh Framework Programme. The authors gratefully acknowledge the Danish Meteorological Institute (DMI) for the distribution of East Greenland synoptic weather data, the Arctic Summer Cloud Ocean Study (ASCOS) for the provision of their data, the National Oceanic and Atmospheric Administration (NOAA) for access to the Integrated Global Radiosonde Archive dataset, and the NOAA Air Resources Laboratory for their release of the HYSPLIT transport and dispersion model data. The Matlab script to extract IGRA data was provided by Dr. Andy Rhines (University of Washington). Discussions with Dr. Jakob Abermann (Asiaq, Greenland Survey) directed part of this work towards the use of microwave radiometer retrievals. Drs. Matt Letts, Chris Hopkinson, Phil Bonnaventure and Rob Laird (University of Lethbridge) are acknowledged for their encouragement and critical feedback. Finally, the authors would like to particularly thank two anonymous reviewers for their valuable feedback.

References

  1. Alt BT (1979) Investigation of summer synoptic climate controls on the mass balance of Meighen Ice Cap. Atmos Ocean 17(3):181–199CrossRefGoogle Scholar
  2. American Meteorological Society (2015) Sea fog. Glossary of Meteorology. http://glossary.ametsoc.org/wiki/Sea_fog. Accessed 1 Feb 2018
  3. Antikainen V, Paukkunen A, Jauhiainen H (2002) Measurement accuracy and repeatability of Vaisala RS90 Radiosonde. Vaisala News 159:11–13Google Scholar
  4. Bendix J (1995) A case study on the determination of fog optical depth and liquid water path using AVHRR data and relations to fog liquid water content and horizontal visibility. Remote Sens 16(3):515–530CrossRefGoogle Scholar
  5. Bennartz R, Shupe MD, Turner DD, Walden VP, Steffen K, Cox CJ, Hulie MS, Miller NB, Pettersen C (2013) July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature 496(7443):83–86CrossRefGoogle Scholar
  6. Bergot T (2016) Large-eddy simulation study of the dissipation of radiation fog. Q J R Meteorol Soc 142:1029–1040CrossRefGoogle Scholar
  7. Bødtker E (2003) Observation systems 2003, technical report 03-16, Ministry of Transport, Danish Meteorological Institute, CopenhagenGoogle Scholar
  8. Box JE, Cohen AE (2006) Upper-air temperatures around Greenland: 1964–2005. Geophys Res Lett.  https://doi.org/10.1029/2006GL025723 Google Scholar
  9. Braun C, Hardy DR, Bradley RS, Sahanatien V (2004) Surface mass balance of the Ward Hunt Ice Rise and Ward Hunt Ice Shelf, Ellesmere Island, Nunavut, Canada. J Geophys Res Atmos 109(D22):1–9CrossRefGoogle Scholar
  10. Cappelen J (2015) Greenland—DMI historical climate data collection 1784–2014. Technical report 15-04, Danish Meteorological Institute, CopenhagenGoogle Scholar
  11. Cappelen J, Jørgensen BV, Laursen EV (2001) The observed climate of Greenland, 1958–99-with climatological standard normals, 1961–90. Technical report 00-18, Danish Meteorological Institute, CopenhagenGoogle Scholar
  12. Chutko KJ, Lamoureux SF (2009) The influence of low-level thermal inversions on estimated melt-season characteristics in the central Canadian Arctic. Int J Climatol 29(2):259–268CrossRefGoogle Scholar
  13. Circumpolar Arctic Vegetation Map (CAVM) (2003) Scale: 1:7,500,000. Conservation of Arctic flora and fauna (CAFF) Map No. 1. U.S. Fish and Wildlife Service, Anchorage, AlaskaGoogle Scholar
  14. Cotton WR, Anthes RA (1989) Fogs and Stratocumulus Clouds. In: Cotton WR, Anthes RA (eds) Storm and cloud dynamics. International geophysics series 44. Academic Press, San Diego, pp 303–367Google Scholar
  15. Croft PJ, Pfost RL, Medlin JM, Johnson GA (1997) Fog forecasting for the southern region: a conceptual model approach. Weather Forecast 12(3):545–556CrossRefGoogle Scholar
  16. Curry JA, Ebert EE, Herman GF (1988) Mean and turbulence structure of the summertime Arctic cloudy boundary layer. Q J R Meteorol Soc 114(481):715–746CrossRefGoogle Scholar
  17. Curry JA, Schramm JL, Rossow WB, Randall D (1996) Overview of Arctic cloud and radiation characteristics. J Clim 9(8):1731–1764CrossRefGoogle Scholar
  18. Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected Arctic sea ice loss in the late 21st century. J Clim 23(2):333–351CrossRefGoogle Scholar
  19. Devasthale A, Willén U, Karlsson K-G, Jones CG (2010) Quantifying the clear-sky temperature inversion frequency and strength over the Arctic Ocean during summer and winter seasons from AIRS profiles. Atmos Chem Phys 10(12):5565–5572CrossRefGoogle Scholar
  20. Durre I, Yin X (2008) Enhanced radiosonde data for studies of vertical structure. Bull Am Meteorol Soc 89(9):1257–1262CrossRefGoogle Scholar
  21. Durre I, Vose RS, Wuertz DB (2006) Overview of the Integrated Global Radiosonde Archive. J Clim 19(1):53–68CrossRefGoogle Scholar
  22. Eastman R, Warren SG (2010) Arctic cloud changes from surface and satellite observations. J Clim 23(15):4233–4242CrossRefGoogle Scholar
  23. Gaffen DJ (1993) Historical changes in radiosonde instruments and practices. WMO/TD-No. 541. Instruments and observing methods report no. 50. World Meteorological Organization, Geneva, SwitzerlandGoogle Scholar
  24. Gao S, Lin H, Shen B, Fu G (2007) A heavy sea fog event over the Yellow Sea in March 2005: analysis and numerical modeling. Adv Atmos Sci 24(1):65–81CrossRefGoogle Scholar
  25. Gardner AS, Sharp M (2007) Influence of the arctic circumpolar vortex on the mass balance of Canadian High Arctic glaciers. J Clim 20(18):4586–4598CrossRefGoogle Scholar
  26. Gueye S (2014) Frequency, timing and temporal patterns of regional coastal Arctic fog in East Greenland. MSc Research Thesis, University of Amsterdam (Netherlands)Google Scholar
  27. Gultepe I (2007) Fog and boundary layer clouds: fog visibility and forecasting. Springer Science and Business Media, BaselGoogle Scholar
  28. Gultepe I, Tardif R, Michaelides SC, Cermak J, Bott A, Bendix J, Müller MD, Pagowski M, Hansen B, Ellrod E, Jacobs W, Toth G, Cober SG (2007) Fog research: a review of past achievements and future perspectives. Pure Appl Geophys 164(6–7):1121–1159CrossRefGoogle Scholar
  29. Gultepe I, Kuhn T, Pavolonis M, Calvert C, Gurka J, Heymsfield AJ, Liu PSK, Zhou B, Ware R, Ferrier B, Milbrandt J, Bernstein B (2014) Ice fog in arctic during FRAM–Ice Fog project: aviation and nowcasting applications. Bull Am Meteorol Soc 95(2):211–226CrossRefGoogle Scholar
  30. Gultepe I, Fernando HJS, Pardyjak ER, Hoch SW, Silver Z, Creegan E, Leo LS, Pu Z, De Wekker FJ, Hang C (2016) An overview of the MATERHORN fog project: observations and predictability. Pure appl Geophys 173(9):2983–3010CrossRefGoogle Scholar
  31. Hanesiak JM, Wang XL (2005) Adverse-weather trends in the Canadian Arctic. J Clim 18(16):3140–3156CrossRefGoogle Scholar
  32. Hanna E, Cappelen J (2003) Recent cooling in coastal southern Greenland and relation with the North Atlantic Oscillation. Geophys Res Lett.  https://doi.org/10.1029/2002GL015797 Google Scholar
  33. Hardy B (1998) Determination of relative humidity in subzero temperatures. Technical Report RH_WMO, RH System, Albuquerque, New MexicoGoogle Scholar
  34. Heintzenberg J, Leck C, Birmili W, Wehner B, Tjernström M, Wiedensohler A (2006) Aerosol number–size distributions during clear and fog periods in the summer high Arctic: 1991, 1996 and 2001. Tellus B 58(1):41–50CrossRefGoogle Scholar
  35. Huang H, Liu H, Huang J, Mao W, Bi X (2015) Atmospheric boundary layer structure and turbulence during sea fog on the southern China coast. Mon Weather Rev 143(5):1907–1923CrossRefGoogle Scholar
  36. Hulth J, Rolstad C, Trondsen K, Rodby RW (2010) Surface mass and energy balance of Sorbreen, Jan Mayen, 2008. Ann Glaciol 51(55):110–119CrossRefGoogle Scholar
  37. Ingleby B, Fucile E, Vasiljevic D, Kral T, Isaksen L (2014) Use of BUFR radiosonde and surface observations at ECMWF. In: Using ECMWF forecast workshop, 4–6 June 2014, Reading, UKGoogle Scholar
  38. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–30Google Scholar
  39. Kahl JD (1990) Characteristics of the low-level temperature inversion along the Alaskan Arctic coast. Int J Climatol 10(5):537–548CrossRefGoogle Scholar
  40. Kahl JD, Serreze MC, Schnell RC (1992) Tropospheric low-level temperature inversions in the Canadian Arctic. Atmos Ocean 30(4):511–529CrossRefGoogle Scholar
  41. Kim CK, Yum SS (2010) Local meteorological and synoptic characteristics of fogs formed over Incheon international airport in the west coast of Korea. Adv Atmos Sci 27(4):761–776CrossRefGoogle Scholar
  42. Kim CK, Yum SS (2017) Turbulence in marine fog. In: Koračin D, Dorman CE (eds) Marine fog: challenges and advancements in observations, modeling, and forecasting. Springer International Publishing, Berlin, pp 245–271CrossRefGoogle Scholar
  43. Klein T, Heinemann G (2002) Interaction of katabatic winds and mesocyclones near the eastern coast of Greenland. Meteorol Appl 9(4):407–422CrossRefGoogle Scholar
  44. Koerner RM (2005) Mass balance of glaciers in the Queen Elizabeth Islands, Nunavut, Canada. Ann Glaciol 42(1):417–423CrossRefGoogle Scholar
  45. Koračin D (2017) Modeling and forecasting marine fog. In: Koračin D, Dorman C (eds) Marine fog: challenges and advancements in observations, modeling, and forecasting. Springer International Publishing, Cham, pp 425–475CrossRefGoogle Scholar
  46. Koračin D, Lewis J, Thompson WT, Dorman CE, Businger JA (2001) Transition of stratus into fog along the California coast: observations and modeling. J Atmos Sci 58(13):1714–1731CrossRefGoogle Scholar
  47. Koračin D, Dorman CE, Lewis JM, Hudson JG, Wilcox EM, Torregrosa A (2014) Marine fog: a review. Atmos Res 143:142–175CrossRefGoogle Scholar
  48. Leipper DF (1994) Fog on the US west coast: a review. Bull Am Meteorol Soc 75(2):229–240CrossRefGoogle Scholar
  49. Lewis SM, Smith LC (2009) Hydrologic drainage of the Greenland ice sheet. Hydrol Process 23(14):2004–2011CrossRefGoogle Scholar
  50. Lewis JM, Koračin D, Rabin R, Businger J (2003) Sea fog off the California coast: viewed in the context of transient weather systems. J Geophys Res Atmos.  https://doi.org/10.1029/2002JD002833 Google Scholar
  51. Liu Y, Key JR, Liu Z, Wang X, Vavrus SJ (2012) A cloudier Arctic expected with diminishing sea ice. Geophys Res Lett.  https://doi.org/10.1029/2012GL051251 Google Scholar
  52. Mernild SH, Hansen BU, Jakobsen BH, Hasholt B (2008) Climatic conditions at the Mittivakkat Glacier catchment (1994–2006), Ammassalik Island, SE Greenland, and in a 109-year perspective (1898–2006). Geogr Tidssk Dan J Geogr 108(1):51–72CrossRefGoogle Scholar
  53. Meyer WD, Rao GV (1999) Radiation fog prediction using a simple numerical model. Pure Appl Geophys 155(1):57–80CrossRefGoogle Scholar
  54. Nakanishi M, Niino H (2006) An improved Mellor–Yamada level-3 model: its numerical stability and application to a regional prediction of advection fog. Boundary Layer Meteorol 119(2):397–407CrossRefGoogle Scholar
  55. Nardino M, Georgiadis T (2003) Cloud type and cloud cover effects on the surface radiative balance at several polar sites. Theor Appl Climatol 74(3–4):203–215CrossRefGoogle Scholar
  56. National Oceanic and Atmospheric Administration (NOAA) (1995) Surface weather observations and reports, Federal Meteorological Handbook No. 1, Department of Commerce, NOAAGoogle Scholar
  57. Nilsson ED (1996) Planetary boundary layer structure and air mass transport during the International Arctic Ocean Expedition 1991. Tellus B 48(2):178–196CrossRefGoogle Scholar
  58. Nilsson ED, Bigg EK (1996) Influences on formation and dissipation of high arctic fogs during summer and autumn and their interaction with aerosol. Tellus Ser B Chem Phys Meteorol 48(2):234–253CrossRefGoogle Scholar
  59. Oke TR (1987) Boundary layer climates, 2nd edn. Methuen & Co. Ltd, LondonGoogle Scholar
  60. Palm SP, Strey ST, Spinhirne J, Markus T (2010) Influence of Arctic sea ice extent on polar cloud fraction and vertical structure and implications for regional climate. J Geophys Res Atmos.  https://doi.org/10.1029/2010JD013900 Google Scholar
  61. Petterssen S (1956) Weather analysis and forecasting, vol 2, 2nd edn. McGraw-Hill Publ. Inc., New YorkGoogle Scholar
  62. Pfeffer WT, Arendt AA, Bliss A, Bolch T, Cogley JG, Gardner AS, Hagen JO, Hock R, Kaser G, Kienholz C, Miles ES, Moholdt G, Mölg N, Paul F, Radić V, Rastner P, Raup BH, Rich J, Sharp MJ, The Randolph Consortium (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glaciol 60(221):537–552CrossRefGoogle Scholar
  63. Pilié RJ, Mack EJ, Rogers CW, Katz U, Kocmond WC (1979) The formation of marine fog and the development of fog-stratus systems along the California coast. J Appl Meteorol 18(10):1275–1286CrossRefGoogle Scholar
  64. Roach WT, Brown R, Caughey SJ, Garland JA, Readings CJ (1976) The physics of radiation fog: I–a field study. Q J R Meteorol Soc 102(432):313–333Google Scholar
  65. Roach WT, Brown R, Caughey SJ, Crease BA, Slingo A (1982) A field study of nocturnal stratocumulus: I. Mean structure and budgets. Q J R Meteorol Soc 108(455):103–123CrossRefGoogle Scholar
  66. Sedlar J, Tjernström M (2009) Stratiform cloud-inversion characterization during the Arctic melt season. Boundary Layer Meteorol 132(3):455–474CrossRefGoogle Scholar
  67. Sedlar J, Shupe MD, Tjernström M (2012) On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. J Clim 25(7):2374–2393CrossRefGoogle Scholar
  68. Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Change 77(1–2):85–96CrossRefGoogle Scholar
  69. Serreze MC, Barry RG (2014) The Arctic climate system. 2nd edition. Cambridge University PressGoogle Scholar
  70. Serreze MC, Barrett AP, Slater AG, Steele M, Zhang J, Trenberth KE (2007) The large-scale energy budget of the Arctic. J Geophys Res Atmos.  https://doi.org/10.1029/2006JD008230 Google Scholar
  71. Shupe MD, Intrieri JM (2004) Cloud radiative forcing of the Arctic surface: the influence of cloud properties, surface albedo, and solar zenith angle. J Clim 17(3):616–628CrossRefGoogle Scholar
  72. Shupe MD, Persson POG, Brooks IM, Tjernström M, Sedlar J, Mauritsen T, Sjogren S, Leck C (2013) Cloud and boundary layer interactions over the Arctic sea ice in late summer. Atmos Chem Phys 13:9379–9400CrossRefGoogle Scholar
  73. Sotiropoulou G, Sedlar J, Tjernström M, Shupe MD, Brooks IM, Persson POG (2014) The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface. Atmos Chem Phys 14(22):12573–12592CrossRefGoogle Scholar
  74. Sotiropoulou G, Tjernström M, Sedlar J, Achtert P, Brooks BJ, Brooks IM, Persson POG, Prytherch J, Salisbury DJ, Shupe MD, Johnston PE, Wolfe D (2016) Atmospheric conditions during the Arctic clouds in summer experiment (ACSE): contrasting open water and sea ice surfaces during melt and freeze-up seasons. J Clim 29(24):8721–8744CrossRefGoogle Scholar
  75. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96(12):2059–2077CrossRefGoogle Scholar
  76. Steinbrecht W, Claude H, Schönenborn F, Leiterer U, Dier H, Lanzinger E (2008) Pressure and temperature differences between Vaisala RS80 and RS92 radiosonde systems. J Atmos Ocean Technol 25(6):909–927CrossRefGoogle Scholar
  77. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  78. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallman W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21(1):133–166Google Scholar
  79. Telford JW, Chai SK (1984) Inversions, and fog, stratus and cumulus formation in warm air over cooler water. Boundary Layer Meteorol 29(2):109–137CrossRefGoogle Scholar
  80. Tjernström M, Birch CE, Brooks IM, Shupe MD, Persson POG, Sedlar J, Mauritsen T, Leck C, Paatero J, Szczodrak M, Wheeler CR (2012) Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS). Atmos Chem Phys 12(15):6863–6889CrossRefGoogle Scholar
  81. Tjernström M, Leck C, Birch CE, Bottenheim JW, Brooks BJ, Brooks IM, Bäcklin L, Chang RY-W, de Leeuw G, Di Liberto L, de la Rosa S, Granath E, Graus M, Hansel A, Heintzenberg J, Held A, Hind A, Johnston P, Knulst J, Martin M, Matrai PA, Mauritsen T, Müller M, Norris SJ, Orellana MV, Orsini DA, Paatero J, Persson POG, Gao Q, Rauschenberg C, Ristovski Z, Sedlar J, Shupe MD, Sierau B, Sirevaag A, Sjogren S, Stetzer O, Swietlicki E, Szczodrak M, Vaattovaara P, Wahlberg N, Westberg M, Wheeler CR (2014) The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design. Atmos Chem Phys 14(6):2823–2869CrossRefGoogle Scholar
  82. Tjernström M, Shupe MD, Brooks IM, Persson POG, Prytherch J, Salisbury DJ, Sedlar J, Achtert P, Brooks BJ, Johnston PE, Sotiropoulou G, Wolfe D (2015) Warm-air advection, air mass transformation and fog causes rapid ice melt. Geophys Res Lett 42(13):5594–5602CrossRefGoogle Scholar
  83. Uttal T, Curry JA, Mcphee MG, Perovich DK, Moritz RE, Maslanik JA, Guest PS, Stern HL, Moore JA, Turenne R, Heiberg A, Serreze MC, Wylie DP, Persson OG, Paulson CA, Halle C, Morison JH, Wheeler PA, Makshtas A, Welch H, Shupe MD, Intrieri JM, Stamnes K, Lindsey RW, Pinkel R, Pegau WS, Stanton TP, Grenfeld TC (2002) Surface heat budget of the Arctic Ocean. Bull Am Meteorol Soc 83(2):255–275CrossRefGoogle Scholar
  84. Vaisala (2002) Weather sensor FD12P user’s guide. M210296en-A, HelsinkiGoogle Scholar
  85. Van Tricht K, Lhermitte S, Lenaerts JT, Gorodetskaya IV, L’Ecuyer TS, Noël B, van den Broeke MR, Turner DD, Van Lipzig NP (2016) Clouds enhance Greenland ice sheet meltwater runoff. Nat Commun.  https://doi.org/10.1038/ncomms10266 Google Scholar
  86. Vavrus S, Holland MM, Bailey DA (2011) Changes in Arctic clouds during intervals of rapid sea ice loss. Clim Dynam 36(7–8):1475–1489CrossRefGoogle Scholar
  87. Vinje T (2001) Fram Strait ice fluxes and atmospheric circulation: 1950–2000. J Clim 14(16):3508–3517CrossRefGoogle Scholar
  88. Welch RM, Wielicki BA (1986) The stratocumulus nature of fog. J Appl Meteorol Clim 25(2):101–111CrossRefGoogle Scholar
  89. Wood R (2012) Stratocumulus clouds. Mon Weather Rev 140(8):2373–2423CrossRefGoogle Scholar
  90. World Meteorological Organization (WMO) (1995) Manual on codes, volume I.1: part A—alphanumeric codes. WMO-No. 306, GenevaGoogle Scholar
  91. World Meteorological Organization (WMO) (2017) International cloud atlas (2017 edn). https://cloudatlas.wmo.int/. Accessed 1 Feb 2018
  92. Zhang YH, Seidel DJ (2011) Challenges in estimating trends in Arctic surface-based inversions from radiosonde data. Geophys Res Lett.  https://doi.org/10.1029/2011GL048728 Google Scholar
  93. Zhang T, Stamnes K, Bowling SA (1996) Impact of clouds on surface radiative fluxes and snowmelt in the Arctic and Subarctic. J Clim 9(9):2110–2123CrossRefGoogle Scholar
  94. Zhang SP, Xie SP, Liu QY, Yang YQ, Wang XG, Ren ZP (2009) Seasonal variations of Yellow Sea fog: observations and mechanisms. J Clim 22(24):6758–6772CrossRefGoogle Scholar
  95. Zhang Y, Seidel DJ, Golaz JC, Deser C, Tomas RA (2011) Climatological characteristics of Arctic and Antarctic surface-based inversions. J Clim 24(19):5167–5186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeographyUniversity of LethbridgeLethbridgeCanada
  2. 2.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  3. 3.Department of Atmospheric and Oceanic SciencesUniversity of ColoradoBoulderUSA
  4. 4.Meteorological Research DivisionEnvironment and Climate Change CanadaTorontoCanada
  5. 5.Department of GeographyQueen’s UniversityKingstonCanada

Personalised recommendations