Boundary-Layer Meteorology

, Volume 168, Issue 3, pp 469–495 | Cite as

A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models

  • Yang Pan
  • Cristina L. Archer
Research Article


To better understand the potential impact of wind farms on weather and climate at the regional to global scales, a new hybrid wind-farm parametrization is proposed for mesoscale and climate models. The proposed parametrization is a hybrid model because it is not based on physical processes or conservation laws, but on the multiple linear regression of the results of large-eddy simulations (LES) with the geometric properties of the wind-farm layout (e.g., the blockage ratio and blockage distance). The innovative aspect is that each wind turbine is treated individually based on its position in the farm and on the wind direction by predicting the velocity upstream of each turbine. The turbine-induced forces and added turbulence kinetic energy (TKE) are first derived analytically and then implemented in the Weather Research and Forecasting model. Idealized simulations of the offshore Lillgrund wind farm are conducted. The wind-speed deficit and TKE predicted with the hybrid model are in excellent agreement with those from the LES results, while the wind-power production estimated with the hybrid model is within 10% of that observed. Three additional wind farms with larger inter-turbine spacing than at Lillgrund are also considered, and a similar agreement with LES results is found, proving that the hybrid parametrization works well with any wind farm regardless of the spacing between turbines. These results indicate the wind-turbine position, wind direction, and added TKE are essential in accounting for the wind-farm effects on the surroundings, for which the hybrid wind-farm parametrization is a promising tool.


Climate model Large-eddy simulation Numerical weather prediction Wind energy Wind-farm parametrization 



This research was funded in part by HKF Technology and by the Delaware Municipal Electric Corporation (DEMEC). The simulations were conducted on the Farber high-performance computer cluster of the University of Delaware. We thank Vattenfall for sharing the Lillgrund data.


  1. Abkar M, Porté-Agel F (2015) A new wind-farm parameterization for large-scale atmospheric models. J Renew Sust Energy 7(1):013,121CrossRefGoogle Scholar
  2. Adams AS, Keith DW (2007) Wind energy and climate: modeling the atmospheric impacts of wind energy turbines. In: Americal Geophysical Union Fall Meeting, San Francisco, B44B-08Google Scholar
  3. Adams AS, Keith DW (2013) Are global wind power resource estimates overstated? Environ Res Lett 8(1):015,021CrossRefGoogle Scholar
  4. Ainslie JF (1988) Calculating the flowfield in the wake of wind turbines. J Wind Eng Ind Aerodyn 27(1):213–224CrossRefGoogle Scholar
  5. Aitken ML, Rhodes ME, Lundquist JK (2012) Performance of a wind-profiling lidar in the region of wind turbine rotor disks. J Atmos OceanTechnol 29(3):347–355Google Scholar
  6. Aitken ML, Kosović B, Mirocha JD, Lundquist JK (2014) Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the weather research and forecasting model. J Renew Sust Energy 6(3):033,137CrossRefGoogle Scholar
  7. Archer CL, Mirzaeisefat S, Lee S (2013) Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation. Geophys Res Lett 40(18):4963–4970CrossRefGoogle Scholar
  8. Archer CL, Wu S, Vasel-Be-Hagh A, Brodie JF, Delgado R, St Pé A, Oncley S, Semmer S (2018) Meteorological observations of wind turbine effects in the atmospheric boundary layer: the VERTEX field campaign. Bull Am Meteorol Soc (in press)Google Scholar
  9. Armstrong A, Burton RR, Lee SE, Mobbs S, Ostle N, Smith V, Waldron S, Whitaker J (2016) Ground-level climate at a peatland wind farm in scotland is affected by wind turbine operation. Environ Res Lett 11(4):044,024CrossRefGoogle Scholar
  10. Baidya Roy S, Traiteur JJ (2010) Impacts of wind farms on surface air temperatures. Proc Natl Acad Sci 107(42):17,899–17,904CrossRefGoogle Scholar
  11. Baidya Roy S, Pacala S, Walko R (2004) Can large wind farms affect local meteorology? J Geophys Res Atmos 109:D19101CrossRefGoogle Scholar
  12. Banta RM, Pichugina YL, Brewer WA, Lundquist JK, Kelley ND, Sandberg SP, Alvarez RJI, Hardesty RM, Weickmann AM (2015) 3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar. J Atmos Ocean Technol 32(5):904–914CrossRefGoogle Scholar
  13. Barrie DB, Kirk-Davidoff DB (2010) Weather response to a large wind turbine array. Atmos Chem Phys 10:769–775CrossRefGoogle Scholar
  14. Barthelmie RJ, Hansen K, Frandsen ST, Rathmann O, Schepers JG, Schlez W, Phillips J, Rados K, Zervos A, Politis ES, Chaviaropoulos PK (2009) Modelling and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energy 12(5):431–444. CrossRefGoogle Scholar
  15. Barthelmie RJ, Pryor S, Frandsen ST, Hansen KS, Schepers J, Rados K, Schlez W, Neubert A, Jensen L, Neckelmann S (2010) Quantifying the impact of wind turbine wakes on power output at offshore wind farms. J Atmos Ocean Technol 27(8):1302–1317CrossRefGoogle Scholar
  16. Bastankhah M, Porté-Agel F (2014) A new analytical model for wind-turbine wakes. Renew Energy 70:116–123CrossRefGoogle Scholar
  17. Bhaganagar K, Debnath M (2015) The effects of mean atmospheric forcings of the stable atmospheric boundary layer on wind turbine wake. J Renew Sust Energy 7(1):013,124CrossRefGoogle Scholar
  18. Blahak U, Goretzki B, Meis J (2010) A simple parameterization of drag forces induced by large wind farms for numerical weather prediction models. In: Proceedings of the european wind energy conference and exhibitionGoogle Scholar
  19. Brower M, Robinson N (2012) The openWind deep-array wake model: development and validation. Technical report AWS Truepower, Albany, New YorkGoogle Scholar
  20. Calaf M, Meneveau C, Meyers J (2010) Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys Fluids 22(1):015,110CrossRefGoogle Scholar
  21. Chamorro LP, Porté-Agel F (2010) Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: a wind-tunnel study. Boundary-Layer Meteorol 136:515–533CrossRefGoogle Scholar
  22. Churchfield, Lee S, Moriarty P, Martinez L, Leonardi S, Vijayakumar G, Brasseur J (2012a) A large-eddy simulation of wind-plant aerodynamics. In: 50th AIAA aerospace sciences meeting, Nashville, Tennessee, 9–12 January 2012Google Scholar
  23. Churchfield J, Lee S, Michalakes J, Moriarty PJ (2012b) A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. J Turbul 13(14):1–32Google Scholar
  24. Creech A, Früh WG, Maguire AE (2015) Simulations of an offshore wind farm using large-eddy simulation and a torque-controlled actuator disc model. Surv Geophys 36(3):427–481CrossRefGoogle Scholar
  25. Dahlberg JÅ (2009) Assessment of the Lillgrund windfarm. Technical Report 6_1 LG Pilot Report, Vattenfall, Stockholm, SwedenGoogle Scholar
  26. Eriksson O, Lindvall J, Breton SP, Ivanell S (2015) Wake downstream of the Lillgrund wind farm—a comparison between LES using the actuator disc method and a wind farm parametrization in WRF. In: J Phys, IOP Publishing 625:012–028Google Scholar
  27. España G, Aubrun S, Loyer S, Devinant P (2011) Spatial study of the wake meandering using modelled wind turbines in a wind tunnel. Wind Energy 14(7):923–937. CrossRefGoogle Scholar
  28. Fitch AC, Olson JB, Lundquist JK, Dudhia J, Gupta AK, Michalakes J, Barstad I (2012) Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon Weather Rev 140(9):3017–3038CrossRefGoogle Scholar
  29. Fitch AC, Lundquist JK, Olson JB (2013a) Mesoscale influences of wind farms throughout a diurnal cycle. Mon Weather Rev 141(7):2173–2198CrossRefGoogle Scholar
  30. Fitch AC, Olson JB, Lundquist JK (2013b) Parameterization of wind farms in climate models. J Clim 26(17):6439–6458CrossRefGoogle Scholar
  31. Frandsen S, Barthelmie R, Pryor S, Rathmann O, Larsen S, Højstrup J, Thøgersen M (2006) Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 9(1–2):39–53CrossRefGoogle Scholar
  32. Ghaisas NS, Archer CL (2016) Geometry-based models for studying the effects of wind farm layout. J Atmos Ocean Technol 33(3):481–501. CrossRefGoogle Scholar
  33. Ghaisas NS, Archer CL, Xie S, Wu S, Maguire E (2017) Evaluation of layout and atmospheric stability effects in wind farms using large-eddy simulation. Wind Energy 20(7):1227–1240. Google Scholar
  34. GWEC (2014) Global wind statistics 2013Google Scholar
  35. Hansen KS, Barthelmie RJ, Jensen LE, Sommer A (2012) The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energy 15(1):183–196CrossRefGoogle Scholar
  36. Iungo GV, Wu YT, Porté-Agel F (2013) Field measurements of wind turbine wakes with lidars. J Atmos Ocean Technol 30:274–287CrossRefGoogle Scholar
  37. Jacobson MZ, Archer CL (2012) Saturation wind power potential and its implications for wind energy. Proc Natl Acad Sci 109(39):15,679–15,684CrossRefGoogle Scholar
  38. Jensen NO (1983) A note on wind generator interaction. Technical report Risø-M-2411, Risø National Laboratory, DenmarkGoogle Scholar
  39. Jiménez PA, Navarro J, Palomares AM, Dudhia J (2015) Mesoscale modeling of offshore wind turbine wakes at the wind farm resolving scale: a composite-based analysis with the weather research and forecasting model over horns rev. Wind Energy 18:559–566CrossRefGoogle Scholar
  40. Katic I, Højstrup J, Jensen NO (1986) A simple model for cluster efficiency. In: European wind energy association conference and exhibition, Rome, Italy, 7-9 October 1986, pp 407–410Google Scholar
  41. Keith DW, DeCarolis JF, Denkenberger DC, Lenschow DH, Malyshev SL, Pacala S, Rasch PJ (2004) The influence of large-scale wind power on global climate. Proc Natl Acad Sci 101(46):16,115–16,120CrossRefGoogle Scholar
  42. Kirk-Davidoff DB, Keith DW (2008) On the climate impact of surface roughness anomalies. J Atmos Sci 65(7):2215–2234CrossRefGoogle Scholar
  43. Larsen GC (1988) A simple wake calculation procedure. Technical Report Risø-M-2760, Risø National Laboratory, DenmarkGoogle Scholar
  44. Larsen GC, Madsen Aagaard H, Bingöl F, Mann J, Ott S, Sørensen JN, Okulov V, Troldborg N, Nielsen NM, Thomsen K, Larsen TJ, Mikkelsen R (2007) Dynamic wake meandering modeling. Technical report Risø-R-1607(EN), Risø National Laboratory, DenmarkGoogle Scholar
  45. Lu H, Porté-Agel F (2011) Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys Fluids 23(6):065,101CrossRefGoogle Scholar
  46. Lu H, Porté-Agel F (2015) On the impact of wind farms on a convective atmospheric boundary layer. Boundary-Layer Meteorol 157(1):81–96CrossRefGoogle Scholar
  47. Madsen HA, Larsen GC, Larsen TJ, Troldborg N, Mikkelsen R (2010) Calibration and validation of the dynamic wake meandering model for implementation in an aeroelastic code. J Sol Energy Eng 132(4):041,014CrossRefGoogle Scholar
  48. Magnusson M, Smedman AS (1994) Influence of atmospheric stability on wind turbine wakes. Wind Eng 18(3):139–152Google Scholar
  49. Marvel K, Kravitz B, Caldeira K (2013) Geophysical limits to global wind power. Nat Clim Change 3:118–121CrossRefGoogle Scholar
  50. Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31(7):1791–1806CrossRefGoogle Scholar
  51. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875CrossRefGoogle Scholar
  52. Miller LM, Gans F, Kleidon A (2011) Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst Dyn 2(1):1–12CrossRefGoogle Scholar
  53. Mirocha J, Kosovic B, Aitken M, Lundquist J (2014) Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications. J Renew Sust Energy 6(1):013,104CrossRefGoogle Scholar
  54. Mirocha JD, Rajewski DA, Marjanovic N, Lundquist JK, Kosović B, Draxl C, Churchfield MJ (2015) Investigating wind turbine impacts on near-wake flow using profiling lidar data and large-eddy simulations with an actuator disk model. J Renew Sust Energy 7(4):043,143CrossRefGoogle Scholar
  55. Nakanishi M, Niino H (2009) Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Jpn 87(5):895–912CrossRefGoogle Scholar
  56. Ott S (2011) Linearised CFD models for wakes. Technical report Risø-R-1772(EN), Risø National Laboratory, DenmarkGoogle Scholar
  57. Pope SB (2000) Turbulent Flows. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  58. Porté-Agel F, Wu YT, Lu H, Conzemius RJ (2011) Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J Wind Eng Ind Aerodyn 99(4):154–168CrossRefGoogle Scholar
  59. Rajewski DA, Takle ES, Lundquist JK, Oncley S, Prueger JH, Horst TW, Rhodes ME, Pfeiffer R, Hatfield JL, Spoth KK, Doorenbos RK (2013) Crop wind energy experiment (CWEX): observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm. Bull Am Meteorol Soc 94(5):655–672CrossRefGoogle Scholar
  60. Rajewski DA, Takle ES, Lundquist JK, Prueger JH, Pfeiffer RL, Hatfield JL, Spoth KK, Doorenbos RK (2014) Changes in fluxes of heat, H2O, and CO2 caused by a large wind farm. Agric For Meteorol 194:175–187CrossRefGoogle Scholar
  61. Shen WZ, Sørensen J (2002) Numerical modeling of wind turbine wakes. J Fluids Eng 124(2):393–399CrossRefGoogle Scholar
  62. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. Technical Report NCAR/TN-475+STR, National Center for Atmospheric Research, Boulder, ColoradoGoogle Scholar
  63. Smagorinsky J (1963) General circulation experiments with the primitive equations: I. the basic experiment. Mon Weather Rev 91(3):99–164CrossRefGoogle Scholar
  64. Smith CM, Barthelmie R, Pryor S (2013) In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles. Environ Res Lett 8(3):034,006CrossRefGoogle Scholar
  65. Troldborg N, Sørensen JN, Mikkelsen R, Sørensen NN (2014) A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes. Wind Energy 17(4):657–669CrossRefGoogle Scholar
  66. Vanderwende BJ, Kosović B, Lundquist JK, Mirocha JD (2016) Simulating effects of a wind-turbine array using LES and RANS. J Adv Model Earth Syst 8(3):1376–1390CrossRefGoogle Scholar
  67. Volker P, Badger J, Hahmann AN, Ott S (2015) The explicit wake parametrisation v1.0: a wind farm parametrisation in the mesoscale model WRF. Geosci Model Dev 8(11):3715–3731CrossRefGoogle Scholar
  68. Vollmer L, Steinfeld G, Heinemann D, Kühn M (2016) Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study. Wind Energy Sci. 1(2):129–141CrossRefGoogle Scholar
  69. Wang C, Prinn RG (2010) Potential climatic impacts and reliability of very large-scale wind farms. Atmos Chem Phys 10(4):2053–2061CrossRefGoogle Scholar
  70. Wu YT, Porté-Agel F (2011) Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Boundary-Layer Meteorol 138(3):345–366CrossRefGoogle Scholar
  71. Wu YT, Porté-Agel F (2013) Simulation of turbulent flow inside and above wind farms: model validation and layout effects. Boundary-Layer Meteorol 146(2):1–25CrossRefGoogle Scholar
  72. Wu YT, Porté-Agel F (2015) Modeling turbine wakes and power losses within a wind farm using LES: an application to the horns rev offshore wind farm. Renew Energy 75:945–955CrossRefGoogle Scholar
  73. Xie S, Archer C (2015) Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation. Wind Energy 18(10):1815–1838CrossRefGoogle Scholar
  74. Xie S, Archer CL (2017) A numerical study of wind-turbine wakes for three atmospheric stability conditions. Boundary-Layer Meteorol 165(1):87–112. CrossRefGoogle Scholar
  75. Zhou L, Tian Y, Roy SB, Thorncroft C, Bosart LF, Hu Y (2012) Impacts of wind farms on land surface temperature. Nat Clim Change 2(7):539–543CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Earth, Ocean, and EnvironmentUniversity of DelawareNewarkUSA

Personalised recommendations