Skip to main content
Log in

The Effect of Breaking Waves on \(\hbox {CO}_2\) Air–Sea Fluxes in the Coastal Zone

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The influence of wave-associated parameters controlling turbulent \(\hbox {CO}_2\) fluxes through the air–sea interface is investigated in a coastal region. A full year of high-quality data of direct estimates of air–sea \(\hbox {CO}_2\) fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of \(\hbox {CO}_2\) with a mean flux of \(-1.3\, \upmu \hbox {mol m}^{-2}\hbox {s}^{-1}\) (\(-41.6\hbox { mol m}^{-2}\hbox {yr}^{-1}\)). The results of a quantile-regression analysis computed between the \(\hbox {CO}_2\) flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baldocchi DD, Hincks BB, Meyers TP (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69(5):1331–1340

    Article  Google Scholar 

  • Borges AV, Delille B, Frankignoulle M (2005) Budgeting sinks and sources of \(\text{CO}_2\) in the coastal ocean: Diversity of ecosystems counts. Geophys Res Lett 32:L14601. https://doi.org/10.1029/2005GL023053

  • Borges AV (2005) Do we have enough pieces of the jigsaw to integrate \(\text{ CO }_2\) fluxes in the coastal ocean? Estuaries 28(1):3–27

    Article  Google Scholar 

  • Cade BS, Noon BR (2003) A gentle introduction to quantile regression for ecologists. Front Ecol Environ 1(8):412–420

    Article  Google Scholar 

  • Cai W-J, Dai M, Wang Y (2006) Air-sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophys Res Lett 33:L12603. https://doi.org/10.1029/2006GL026219

  • Feely RA, Sabine CL, Hernández-Ayón JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320(5882):1490–1492

    Article  Google Scholar 

  • Foken T, Göckede M, Mauder M, Mahrt L, Amiro B, Munger W (2004) Post-field data quality control. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurements and analysis. Springer, Berlin, pp 181–208

    Google Scholar 

  • Garbe CS, Rutgersson A, Boutin J, De Leeuw G, Delille B, Fairall CW, Gruber N, Hare J, Ho DT, Johnson MT, Nightingale PD, Pettersson H, Piskozub J, Sahlée E, Wt Tsai, Ward B, Woolf D, Zappa CJ (2014) Ocean-atmosphere interactions of gases and particles. In: Johnson MT, Liss PS (eds) Transfer across the air-sea interface. Springer, Berlin, pp 55–112

    Google Scholar 

  • Gattuso JP, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–434

    Article  Google Scholar 

  • Grachev AA, Bariteau L, Fairall CW, Hare JE, Helmig D, Hueber J, Lang EK (2011) Turbulent fluxes and transfer of trace gases from ship-based measurements during texaqs 2006. J Geophys Res 116:D13110. https://doi.org/10.1029/2010JD015502

  • Gutiérrez-Loza L (2016) Evaluación del efecto del oleaje en la tranferencia de gases entre el océano y la atmósfera. Master’s thesis, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México

  • IPCC (2013) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA

  • Jähne B, Münnich KO, Bösinger R, Dutzi A, Huber W, Libner P (1987) On the parameters influencing air-water gas exchange. J Geophys Res 92(C2):1937–1949

    Article  Google Scholar 

  • Jahnke RA (2010) Global synthesis. In: Liu KK, Atkinson L, Quiñones R, Talahue-McManus L (eds) Carbon and nutrient fluxes in continental margins. Springer, Berlin, Heidelberg, pp 597–616

    Chapter  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Sensors and techniques for observing the boundary layer. Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, Cambridge, pp 207–253

    Google Scholar 

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50

    Article  Google Scholar 

  • Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorol 99(2):207–224

    Article  Google Scholar 

  • Laruelle GG, Dürr HH, Slomp CP, Borges AV (2010) Evaluation of sinks and sources of \(\text{ CO }_2\) in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys Res Lett 37:L15607. https://doi.org/10.1029/2010GL043691

  • Mateos E, Marinone S, Parés-Sierra A (2009) Towards the numerical simulation of the summer circulation in Todos Santos Bay, Ensenada. BC Mexico Ocean Model 27(1):107–112

    Article  Google Scholar 

  • McGillis WR, Edson JB, Zappa CJ, Ware JD, McKenna SP, Terray EA, Hare JE, Fairall CW, Drennan W, Donelan M, DeGrandpre MD (2004) Air-sea \(\text{ CO }_2\) exchange in the equatorial Pacific. J Geophys Res 109:C08S02. https://doi.org/10.1029/2003JC002256

  • Mørk ET, Sørensen LL, Jensen B, Sejr MK (2014) Air-sea \(\text{ CO }_2\) gas transfer velocity in a shallow estuary. Boundary-Layer Meteorol 151(1):119–138

    Article  Google Scholar 

  • Norman M, Parampil SR, Rutgersson A, Sahlée E (2013) Influence of coastal upwelling on the air-sea gas exchange of \(\text{ CO }_2\) in a Baltic Sea Basin. Tellus B 65(1):21,831

    Article  Google Scholar 

  • Ocampo-Torres F, Donelan M, Merzi N, Jia F (1994) Laboratory measurements of mass transfer of carbon dioxide and water vapour for smooth and rough flow conditions. Tellus B 46(1):16–32

    Article  Google Scholar 

  • Oncley SP, Friehe CA, Larue JC, Businger JA, Itsweire EC, Chang SS (1996) Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J Atmos Sci 53(7):1029–1044

    Article  Google Scholar 

  • Perez-Brunius P, Lopez M, Pares-Sierra A, Pineda J (2007) Comparison of upwelling indices off Baja California derived from three different wind data sources. CalCOFI Reports 48:204–214

    Google Scholar 

  • Reimer JJ, Vargas R, Smith SV, Lara-Lara R, Gaxiola-Castro G, Martín Hernández-Ayón J, Castro A, Escoto-Rodriguez M, Martínez-Osuna J (2013) Air-sea \(\text{ CO }_2\) fluxes in the near-shore and intertidal zones influenced by the California Current. J Geophys Res 118(10):4795–4810

    Article  Google Scholar 

  • Reyes S, Parés-Sierra A (1983) Análisis de las componentes principales de los vientos superficiales sobre la Bahía de Todos Santos. Geof Int 22(2):179–203

    Google Scholar 

  • Rutgersson A, Smedman A (2010) Enhanced air-sea \(\text{ CO }_2\) transfer due to water-side convection. J Marine Syst 80(1):125–134

    Article  Google Scholar 

  • Sahlée E, Smedman AS, Rutgersson A, Högström U (2008) Spectra of \(\text{ CO }_2\) and water vapour in the marine atmospheric surface layer. Boundary-Layer Meteorol 126(2):279–295

    Article  Google Scholar 

  • Suzuki N, Donelan MA, Komori S, Takagaki N (2015) Estimation of the global air-sea \(\text{ CO }_2\) gas flux considering wave breaking. J Oceanogr 71(2):199–204

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14(3):512–526

    Article  Google Scholar 

  • Wanninkhof R, Asher WE, Ho DT, Sweeney C, McGillis WR (2009) Advances in quantifying air-sea gas exchange and environmental forcing. Annu Rev Mar Sci 1:213–244

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106(447):85–100

    Article  Google Scholar 

  • Weiss A, Kuss J, Peters G, Schneider B (2007) Evaluating transfer velocity-wind speed relationship using a long-term series of direct eddy correlation \(\text{ CO }_2\) flux measurements. J Mar Syst 66(1):130–139

    Article  Google Scholar 

  • Zappa CJ, McGillis WR, Raymond PA, Edson JB, Hintsa EJ, Zemmelink HJ, Dacey JWH, Ho DT (2007) Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophys Res Lett 34:L10601. https://doi.org/10.1029/2006GL028790

  • Zemmelink HJ, Slagter HA, Van Slooten C, Snoek J, Heusinkveld B, Elbers J, Bink NJ, Klaassen W, Philippart CJM, De Baar HJW (2009) Primary production and eddy correlation measurements of \(\text{ CO }_2\) exchange over an intertidal estuary. Geophys Res Lett 36:L19606. https://doi.org/10.1029/2009GL039285

  • Zhao D, Toba Y, Suzuki Y, Komori S (2003) Effect of wind waves on air-sea gas exchange: proposal of an overall \(\text{ CO }_2\) transfer velocity formula as a function of breaking-wave parameter. Tellus B 55(2):478–487

    Google Scholar 

Download references

Acknowledgements

This study was part of the “Sea surface roughness as air–sea interaction control” (RugDiSmarCTRLo-a) CONACyT project (155793). We thank the CICESE’s Physical Oceanography Department the financial support all along this investigation. To J Martínez, R Alcaraz and E Rivera for technical help related to the experimental set-up and maintenance of instruments. To P Osuna for his advice and support, and to the rest of the CICESE’s Waves Research Group for their contributions to this work. We are grateful for the support provided by Ms. Julieta Castro and Ms. Alondra Preciado in logistics and administrative procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucía Gutiérrez-Loza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Loza, L., Ocampo-Torres, F.J. & García-Nava, H. The Effect of Breaking Waves on \(\hbox {CO}_2\) Air–Sea Fluxes in the Coastal Zone. Boundary-Layer Meteorol 168, 343–360 (2018). https://doi.org/10.1007/s10546-018-0342-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-018-0342-x

Keywords

Navigation