Skip to main content

Advertisement

Log in

Momentum- and Heat-Flux Parametrization at Dome C, Antarctica: A Sensitivity Study

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

An extensive meteorological observational dataset at Dome C, East Antarctic Plateau, enabled estimation of the sensitivity of surface momentum and sensible heat fluxes to aerodynamic roughness length and atmospheric stability in this region. Our study reveals that (1) because of the preferential orientation of snow micro-reliefs (sastrugi), the aerodynamic roughness length \(z_{0}\) varies by more than two orders of magnitude depending on the wind direction; consequently, estimating the turbulent fluxes with a realistic but constant \(z_{0}\) of 1 mm leads to a mean friction velocity bias of \(24\,\%\) in near-neutral conditions; (2) the dependence of the ratio of the roughness length for heat \(z_{0t}\) to \(z_{0}\) on the roughness Reynolds number is shown to be in reasonable agreement with previous models; (3) the wide range of atmospheric stability at Dome C makes the flux very sensitive to the choice of the stability functions; stability function models presumed to be suitable for stable conditions were evaluated and shown to generally underestimate the dimensionless vertical temperature gradient; as these models differ increasingly with increases in the stability parameter z / L, heat flux and friction velocity relative differences reached \(100\,\%\) when \(z/L > 1\); (4) the shallowness of the stable boundary layer is responsible for significant sensitivity to the height of the observed temperature and wind data used to estimate the fluxes. Consistent flux results were obtained with atmospheric measurements at heights up to 2 m. Our sensitivity study revealed the need to include a dynamical parametrization of roughness length over Antarctica in climate models and to develop new parametrizations of the surface fluxes in very stable conditions, accounting, for instance, for the divergence in both radiative and turbulent fluxes in the first few metres of the boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amory C, Gallée H, Naaim-Bouvet F, Favier V, Vignon E, Picard G, Trouvilliez A, Piard L, Genthon C, Bellot H (2016a) Seasonal variations in drag coefficients over a sastrugi-covered snowfield of coastal East Antarctica. Boundary-Layer Meteorol (in press)

  • Amory C, Gallée H, Naaim-Bouvet F, Vignon E (2016b) Brief communication: two well-marked cases of sastrugi aerodynamical adjustment. Cryosphere 10:1–8. doi:10.5194/tc-10-743-2016

  • Anderson PS (2009) Measurement of Prandtl number as a function of Richardson number avoiding self-correlation. Boundary-Layer Meteorol 131:345–362

    Article  Google Scholar 

  • Andreas EL (1987) A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorol 38:159–184

    Article  Google Scholar 

  • Andreas EL (2002) Parametrizing scalar transfer over snow and ice: a review. J Hydrometeorol 3:417–432

    Article  Google Scholar 

  • Andreas EL (2011) The fallacy of drifting snow. Boundary-Layer Meteorol 141:333–347. doi:10.1007/s10546-011-9647-8

    Article  Google Scholar 

  • Angot H, Magand O, Helmig D, Ricaud P, Quennehen B, Gallée H, Del Guasta M, Sprovieri F, Pirrone N, Savarino J, Dommergue A (2016) New insights into the atmospheric mercury cycling in central Antarctica and implications on a continental scale. Atmos Chem Phys 16:8249–8264. doi:10.5194/acp-16-8249-2016

    Article  Google Scholar 

  • Argentini S, Viola A, Sempreviva AM, Petenko I (2005) Summer boundary-layer height at the plateau site of Dome C, Antarctica. Boundary-Layer Meteorol 115:409–422. doi:10.1007/s10546-004-5643-6

    Article  Google Scholar 

  • Argentini S, Pietroni I, Mastrantonio G, Viola A, Dargaud G, Petenko I (2014) Observations of near surface wind speed, temperature and radiative budget at Dome C, Antarctic Plateau during 2005. Antarct Sci 26:104–112. doi:10.1017/S0954102013000382

    Article  Google Scholar 

  • Aristidi E, Agabi K, Azouit M, Fossat E, Vernin J, Travouillon T, Lawrence JS, Meyer C, Storey JWV, Halter B, Roth WL, Walden V (2005) An analysis of temperatures and wind speeds above Dome C, Antarctica. Astron Astrophys 430:739–746. doi:10.1051/0004-6361:20041876

    Article  Google Scholar 

  • Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring self-correlation in flux–gradient relationships for stably stratified conditions. J Atmos Sci 63:3045–3054

    Article  Google Scholar 

  • Barral H, Genthon C, Trouvilliez A, Brun C, Amory C (2014a) Blowing snow at D17, Adélie Land, Antarctica: atmospheric moisture issues. Cryosphere 8:1905–1919. doi:10.5194/tc-8-1905-2014

  • Barral H, Vignon E, Bazile E, Traullé O, Gallée H, Genthon C, Brun C, Couvreux F, Le Moigne P (2014b) Summer diurnal cycle at Dome C on the Antarctic plateau. In: Proceeding of the AMS 21st symposium on boundary layers and turbulence

  • Berkowicz R, Prahm LP (1982) Evaluation of the profile method for estimation of surface fluxes of momentum and heat. Atmos Environ 16(12):2809–2819

    Article  Google Scholar 

  • Bintanja R, Van den Broeke MR (1995) Momentum and scalar transfer coefficients over aerodynamically smooth Antarctic surfaces. Bounday-Layer Meteorol 74:89–111

    Article  Google Scholar 

  • Brun E, Six D, Picard G, Vionnet V, Arnaud L, Bazile E, Boone A, Bouchard A, Genthon C, Guidars V, Le Moigne P, Rabier F, Seity Y (2012) Snow/atmosphere coupled simulation at Dome C, Antarctica. J Glaciol 52:721–726

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Carroll JJ (1982) Long-term means and short-term variability of the surface energy balance components at the South Pole. J Geophys Res 87:4277–4786

    Article  Google Scholar 

  • Casasanta G, Pietroni I, Petenko I, Argentini S (2014) Observed and modelled convective mixing-layer height at Dome C, Antarctica. Bounday-Layer Meteorol 151:587–608. doi:10.1007/s10546-014-9907-5

    Google Scholar 

  • Cassano JJ, Parish TR, King JC (2001) Evaluation of turbulent surface flux parameterizations for the stable surface layer over Halley, Antarctica. Mon Weather Rev 129:26–46

    Article  Google Scholar 

  • Champollion N, Picard G, Arnaud L, Lefebvre E, Fily M (2013) Hoard crystal development and disappearnce at Dome C, Antarctica: observation by near-infrared photography and passive microwave satellite. Cryosphere 7:1247–1262. doi:10.5194/tc-7-1247-2013

    Article  Google Scholar 

  • Colbeck SC (1989) Air movement in snow due to wind pumping. J Glaciol 35(120):209–213

    Google Scholar 

  • Connolley WM (1996) The Antarctic temperature inversion. Int J Climatol 16:1333–1342

    Article  Google Scholar 

  • Dalrymphe PC, Lettau H, Wollaston S (1966) South Pole micrometeorology program in studies in Antarctic meteorology. American Geophysical Union, Washington DC

    Google Scholar 

  • Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Dommergue A, Barret M, Courteaud J, Cristofanelli P, Ferrari CP, Gallée H (2012) Dynamic recycling of gaseous elemental mercury in the boundary layer of the Antarctic plateau. Atmos Chem Phys 12:11,027–11,036. doi:10.5194/acp-12-11027-2012

    Article  Google Scholar 

  • Dutra E, Sandu I, Balsamo G, Beljaars A, Freville H, Vignon E, Brun E (2015) Understanding the ECMWF winter surface temperature biases over Antarctica. European Center for Medium range Weather Forecast Technical Memorandum 762

  • Estournel C, Guedalia D (1985) Influence of geostrophic wind on atmospheric nocturnal cooling. J Atmos Sci 42(23):2695–2698

    Article  Google Scholar 

  • Freville H, Brun E, Picard G, Tatarinova N, Arnaud L, Lanconelli C, Reijmer C, van den Broeke M (2014) Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica. Cryosphere 8:1361–1373. doi:10.5194/tc-8-1361-2014

    Article  Google Scholar 

  • Frey MM, Roscoe HK, Kukui S, Savarino J, France JL, King MD, Legrand M, Preunkert S (2014) Atmospheric nitrogen oxides (NO and NO\(_2\)) at Dome C, East Antarctica, during the OPALE campaign. Atmos Chem Phys 15:7859–7875. doi:10.5194/acp-15-7859-2015

    Article  Google Scholar 

  • Frezzotti M, Pourchet M, Flora O, Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi MTR, Udisti R, Fily M (2004) New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Clim Dyn 23:803–813. doi:10.1007/s00382-004-0462-5

    Article  Google Scholar 

  • Frezzotti M, Pourchet M, Flora O, Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi MTR, Traversi R, Udisti R, Fily M (2005) Spatial and temporal variability of snow accumulation in East Antarctica from traverse data. J Glaciol 51(72):113–122

    Article  Google Scholar 

  • Gallée H, Gorodetskaya I (2010) Validation of a limited area model over Dome C, Antarctic Plateau, during winter. Clim Dyn 23:61–72. doi:10.1007/s00382-008-0499-y

    Article  Google Scholar 

  • Gallée H, Guyomarch’h G, Brun E (2001) Impact of snow drift on the Antarctic ice sheet surface mass balance. Possible sensitivity to snow surface properties. Boundary-Layer Meteorol 99:1–19

    Article  Google Scholar 

  • Gallée H, Barral H, Vignon E, Genthon C (2015) A case study of a low level jet during OPALE. Atmos Chem Phys 15. doi:10.5194/acp-15-1-2015

  • Gallée H, Preunkert S, Argentini S, Frey MM, Genthon C, Jourdain B, Pietroni I, Casasanta G, Barral H, Vignon E, Legrand M, Amory C (2015) Characterization of the boundary layer at Dome C (East Antarctica) during the OPALE summer campaign. Atmos Chem Phys 15:6225–6236. doi:10.5194/acp-15-6225-2015

    Article  Google Scholar 

  • Garratt JR, Brost RA (1981) Radiative cooling effects within and above the nocturnal boundary layer. J Atmos Sci 38:2370–2745

    Article  Google Scholar 

  • Genthon C, Town MS, Six D, Favier V, Argentini S, Pellegrini A (2010) Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica. J Geophys Res 115. doi:10.1029/2009JD012741

  • Genthon C, Six D, Favier V, Lazzara M, Keller L (2011) Atmospheric temperature measurement biases on the Antarctic plateau. J Atmos Ocean Technol 28:1598–1605

    Article  Google Scholar 

  • Genthon C, Six D, Gallée H, Grigioni P, Pellegrini A (2013) Two years of atmospheric boundary layer observations on a 45-m tower at Dome C on the antarctic plateau. J Geophys Res Atmos 118. doi:10.1002/jgrd.50128

  • Genthon C, Six D, Scarchilli C, Ciardini V, Frezzotti M (2015) Meteorological and snow accumulation gradients across Dome C. Int J Climatol (Published online in Wiley Online Library, East Antarctic plateau). doi:10.1002/joc.4362

  • Georgiadis T, Argentini S, Mastrantonio G, Viola A, Dargaud G, Sozzi R (2002) Boundary layer convective-like activity at Dome Concordia, Antarctica. Nuovo Cimento Soc Ital Fis 25:425–431

    Google Scholar 

  • Gow AJ (1965) On the accumulation and seasonal stratification of snow at the south pole. J Glaciol 5(40):467–477

    Google Scholar 

  • Grachev AA, Fairall CW, Persson P, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116:201–235. doi:10.1007/s10546-004-2729-0

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007) SHEBA flux–profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorol 124:315–333. doi:10.1007/s10546-007-9177-6

    Article  Google Scholar 

  • Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78:215–246

    Article  Google Scholar 

  • Hicks BB (1978) Some limitations of dimensional analysis and power laws. Boundary-Layer Meteorol 14:567–569

    Article  Google Scholar 

  • Hoch SW, Calanca P, Philipona R, Ohmura A (2007) Year-round observation of longwave radiative flux divergence in Greenland. J Appl Meteorol 46:1469–1479. doi:10.1175/JAM2542.1

    Article  Google Scholar 

  • Hoinkes HC (1967) Low level inversion at Little America V, 1957. In: Symposium on polar meteorology, Geneva, 5–9 September 1966. Technical Note 87. World Meteorological Organisation, pp 60–79

  • Holtslag AAM, De Bruin HAR (1988) Applied modeling of the nighttime surface energy balance over land. J Appl Meteorol 27:689–703

    Article  Google Scholar 

  • Hudson S, Brandt RE (2005) A look at the surface based temperature inversion on the Antarctic plateau. J Clim 118:1673–1696

    Article  Google Scholar 

  • Inoue J (1989) Surface drag over the snow surface of the antarctic plateau. 1 Factors controlling surface drag over the katabatic wind region. J Geophys Res 14(D2):2207–2217

    Article  Google Scholar 

  • Jackson BS, Carroll JJ (1978) Aerodynamic roughness as a function of wind direction over assymetric surface elements. Boundary-Layer Meteorol 14:323–330

    Article  Google Scholar 

  • Joffre SM (1982) Momentum and heat transfer in the surface layer over a frozen sea. Boundary-Layer Meteorol 24:211–229

    Article  Google Scholar 

  • King JC (1990) Some measurements of turbulence over an Antarctic ice-shelf. Q J R Meteorol Soc 116:379–400

    Article  Google Scholar 

  • King JC, Anderson PS (1994) Heat and water vapour fluxes and scalar roughness lengths over an Antarctic ice shelf. Boundary-Layer Meteorol 69:101–121

    Article  Google Scholar 

  • King JC, Anderson PS, Smith MC, Mobbs SD (1996) The surface energy and mass balance at Halley, Antarctica during winter. J Geophys Res 101:119–128

    Article  Google Scholar 

  • King JC, Connolley WM, Derbyshire SH (2001) Sensitivity of modelled Antarctic climate to surface and boundary-layer flux parametrizations. Q J R Meteorol Soc 127:779–794

    Article  Google Scholar 

  • King JC, Argentini SA, Anderson PS (2006) Contrasts between the summertime surface energy balance and boundary layer structure at Dome C and Halley stations, Antarctica. J Geophys Res 111:D02105. doi:10.1029/2005JD006130

    Article  Google Scholar 

  • Kovrova AM (1964) Characteristics of surface inversions in Antarctica. Sov Antarct Exped Inf Bull 49:227–228

    Google Scholar 

  • Kuhn M, Lettau HH, Riordan AJ (1977) Stability-related spiraling in the lowest 32 meters. Meteorol Stud Plateau Stn Antarct Antarct Res Ser 25:93–111

    Article  Google Scholar 

  • Lanconelli C, Busetto M, Dutton EG, König-Langlo G, Maturilli M, Sieger R, Vitale V, Yamanouchi T (2011) Polar baseline surface radiation measurements during the international polar year 2007–2009. Earth Syst Sci Data Discuss 3:1–8. doi:10.5194/essd-3-1-2011

    Article  Google Scholar 

  • Lee X, Massman W, Law B (2004) Handbook of micrometeorology. Kluwer, Dordrecht, 250 pp

  • Legrand M, Preunker S, Jourdain B, Gallée H, Goutail F, Weller R, Savarino J (2009) Year round record of surface ozone at coastal (Dumont d’Urville) and inland (Concordia) sites in East Antarctica. J Geophys Res 114:D20306. doi:10.1029/2008JD011667

    Article  Google Scholar 

  • Lettau HH (1979) Wind and temperature profile prediction for diabatic surface layers including strong inversion cases. Boundary-Layer Meteorol 17:443–464

    Article  Google Scholar 

  • Libois Q (2014) Evolution des propriétés physiques de la neige de surface sur le Plateau Antarctique. PhD Thesis, Université de Grenoble

  • Libois Q, Picard G, Arnaud L, Morin S, Brun E (2014) Modeling the impact of snow drift on the decameter-scale variability of snow properties on the Antarctic Plateau. J Geophys Res Atmos 119:662–681. doi:10.1002/2014JD022361

    Article  Google Scholar 

  • Lykossov VN, Wamser C (1995) Turbulence intermittency in the atmospheric surface layer over snow-covered sites. Boundary-Layer Meteorol 72:393–409

    Article  Google Scholar 

  • Mahrt L (1998) Stratified atmospheric boundary layers and breakdown of models. Theor Comput Fluid Dyn 11:263–279

    Article  Google Scholar 

  • Mastrantonio G, Malvestuto V, Argentini S, Georgiadis T, Viola A (1999) Evidence of the convective boundary layer developing on the Antarctic Plateau during the summer. Meteorol Atmos Phys 71:127–132

    Article  Google Scholar 

  • Mauritsen T, Svensson G, Zilitinkevich S, Esau I, Enger L, Grisogono B (2007) A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J Atmos Sci 64:4113–4125. doi:10.1175/2007JAS2294.1

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the atmosphere near the ground. Trudy Geofiz Inst 24:163–187

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I—a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Ohmura A et al (1998) Baseline surface radiation network (BSRN/WMRC), a new precision radiometry for climate research. Bull Am Meteorol Soc 79:2115–2136

    Article  Google Scholar 

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9:857–861

    Article  Google Scholar 

  • Petenko I, Argentini S, Pietroni I, Viola A, Mastrantonio G, Aristidi E, Bouchez G, Agabi A, Bondoux E (2014) Observations of optically active turbulence in the planetary boundary layer by sodar at the Concordia astronomical observatory, Dome C, Antarctica. Astron Astrophys 568:A44. doi:10.1051/0004-6361/201323299

    Article  Google Scholar 

  • Phillpot HR, Zillman JW (1970) The surface temperature inversion over the Antarctic continent. J Geophys Res 75(21):4161–4169

    Article  Google Scholar 

  • Pietroni I, Argentini S, Petenko I, Sozzi R (2012) Measurements and parametrizations of the atmospheric boundary-layer height at Dome C, Antarctica. Boundary-Layer Meteorol 143:189–206. doi:10.1007/s10546-011-9675-4

    Article  Google Scholar 

  • Ricaud P, Genthon C, Durand P, Attié J, Carminati F, Canut G, Vanacker J, Moggio L, Courcoux Y, Pellegrini A, Rose T (2012) Summer to winter diurnal variabilities of temperature and water vapour in the lowermost troposphere as observed by HAMSTRAD over Dome C, Antarctica. Boundary-Layer Meteorol 143:227–259

    Article  Google Scholar 

  • Rysman JF, Lahellec A, Vignon E, Genthon C, Verrier S (2016) Characterisation of atmospheric Ekman spirals at Dome C, Antarctica. Boundary-Layer Meteorol. doi:10.1007/s10546-016-0144-y

  • Sicart J, Litt M, Helgason W, Tahar VB, Chaperon T (2014) A study of the atmospheric surface layer and roughness lengths on the high-altitude tropical Zongo Glacier, Bolivia. J Geophys Res Atmos 119:3793–3808. doi:10.1002/2013JD020615

    Article  Google Scholar 

  • Smeets C, van den Broeke MR (2008) The parametrisation of scalar transfer over rough ice. Boundary-Layer Meteorol 128:339–388. doi:10.1007/s10546-008-9292-z

    Article  Google Scholar 

  • Stearns CR, Weidner G (1993) Sensible and latent heat flux estimates in antarctica. In: Bromwich DH, Stearns CR (eds) Antarctic meteorology and climatology: studies based on automated weather stations. Antarctic Research Series. AGU, Washington DC, pp 109–138

  • Steeneveld GJ, Wokke MJJ, Groot Zwaaftink CD, Pijlman S, Heusinkveld BG, Jacobs AFG, Holtslag AAM (2010) Observations of the radiation diveregence in the surface layer and its implication for its parametrization in numerical weather prediction models. J Geophys Res 115:D06107. doi:10.1029/2009JD013074

    Article  Google Scholar 

  • Stull RB (1990) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 666 pp

  • Town MS, Walden VP (2009) Surface energy budget over the south pole and turbulent heat fluxes as a function of an empirical bulk Richardson number. J Geophys Res 114:D22107. doi:10.1029/2009JD011888

    Article  Google Scholar 

  • Van As D, Van den Brooke MR, Helsen MM (2006) Structure and dynamics of the summertime atmospheric boundary layer over the Antarctic plateau: 1. Measurements and model validation. J Geophys Res 11:D07102. doi:10.1029/2005JD005948

    Google Scholar 

  • van de Wiel BJH, Moene WH, Hartogensis OK, De Bruin HAR, Holtslag AAM (2003) Intermittent turbulence in the stable boundary layer over land. Part III: a classification for observations during CASES-99. J Atmos Sci 28:2509–2522

    Article  Google Scholar 

  • van de Wiel BJH, Moene AF, Jonker HJJ, Baas P, Basu S, Donda JMM, Sun J, Holtslag AMM (2012) The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J Atmos Sci 69:3097–3115. doi:10.1175/JAS-D-12-064.1

    Article  Google Scholar 

  • Van den Broeke M, Van As D, Reijmer C, van de Wal R (2004) Assessing and improving the quality of unattended radiation observations in Antarctica. J Atmos Ocean Technol 21(9):1417–1431

    Article  Google Scholar 

  • Van den Broeke M, Van As D, Reijmer C, Van de Wal R (2005) Sensible heat exchange at the Antarctic snow surface: a study with automatic weather stations. Int J Climatol 25(8):1081–1101

    Article  Google Scholar 

  • Zilitinkevich S (2002) Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer. Q J R Meteorol Soc 128:913–925

    Article  Google Scholar 

  • Zilitinkevich S, Calanca P (2000) An extended similarity theory for the stably stratified atmospheric surface layer. Q J R Meteorol Soc 126:1913–1923

    Article  Google Scholar 

  • Zilitinkevich S, Elperin T, Kleeorin N, L’vov V, Rogachevskii I (2007) Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: the role of internal gravity waves. Boundary-Layer Meteorol 133:139–164. doi:10.1007/s10546-009-9424-0

    Article  Google Scholar 

  • Zilitinkevich S, Elperin T, Kleeorin N, Rogachevskii I, Esau I, Mauritsen T, Miles MW (2008a) Turbulence energetics in stably stratified geophysical flows: strong and weak mixing regimes. Q J R Meteorol Soc 134:793–799. doi:10.1002/qj.264

    Article  Google Scholar 

  • Zilitinkevich S, Mammarella I, Baklanov AA, Joffre SM (2008b) The effect of stratification on the aerodynamic roughness length and displacement height. Boundary-Layer Meteorol 129:179–190. doi:10.1007/s10546-008-9307-9

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the three anonymous reviewers for their insightful comments. This research was supported by INSU (programs LEFE CLAPA and GABLS4) and OSUG (GLACIOCLIM observatory). Logistical support by the French (IPEV) and Italian (PNRA) polar agencies through ‘programme CALVA’ (1013) and the ‘CoMPASs project’ is gratefully acknowledged. We are particularly grateful to the Concordia Research Station winter-over staff who maintain the instruments year round. The authors thank the BSRN network and Christian Lanconelli for dissemination of the 2010 radiation data, Alessandro Conidi for having provided the recent sonic thermo-anemometer data, Hélène Freville for Dome C photographs and Frédéric Hourdin, Eric Bazile, Patrick Lemoigne, Fleur Couvreux, Olivier Traullé, Bas van de Wiel and Ivo van Hooijdonk for fruitful discussions. Further information on the CALVA meteorological program is available at ‘http://lgge.osug.fr/~genthon/calva/home.shtml’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Vignon.

Appendix

Appendix

1.1 Appendix 1: How Does One Remove Non-stationary Data

Assuming horizontal homogeneity and negligible effects of the Coriolis force, the simplified equations for wind speed and potential temperature in the surface layer in time-varying conditions are as follows

$$\begin{aligned} \frac{\partial u}{\partial t}= & {} -\frac{\partial \overline{u^{\prime }w^{\prime }}}{\partial z}, \end{aligned}$$
(12)
$$\begin{aligned} \frac{\partial \theta }{\partial t}= & {} -\frac{\partial \overline{\theta ^{\prime }w^{\prime }}}{\partial z}. \end{aligned}$$
(13)

Further explanations concerning the notations are given in Sect. 2.3. The surface layer in which the MO theory is valid is often defined as the layer across which the turbulent fluxes do not diverge more than 10% in norm (Stull 1990), i.e.

$$\begin{aligned} \frac{|\overline{u^{\prime }w^{\prime }}_{z}-\overline{u^{\prime }w^{\prime }}_{s}|}{z}< & {} \frac{0.1 ~|\overline{u^{\prime } w^{\prime }}_{s}|}{z}, \end{aligned}$$
(14)
$$\begin{aligned} \frac{|\overline{\theta ^{\prime } w^{\prime }}_{z}-\overline{\theta ^{\prime } w^{\prime }}_{s}|}{z}< & {} \frac{0.1~ |\overline{\theta ^{\prime } w^{\prime }}_{s}|}{z}, \end{aligned}$$
(15)

where the s indices refer to surface values, and z indices refer to values at height z in the surface layer. Approximating time and spatial derivatives by bulk gradients(\(\partial \approx \Delta \)) and combining Eq. 12 with Eq. 14 and Eq. 13 with Eq. 15 leads to

$$\begin{aligned} {\Delta } u< & {} 0.1~ \frac{|\overline{u^{\prime }w^{\prime }}_{s}| {\Delta } t}{z}, \end{aligned}$$
(16)
$$\begin{aligned} {\Delta } \theta< & {} 0.1 ~\frac{|\overline{\theta ^{\prime }w^{\prime }}_{s}| {\Delta } t}{z}. \end{aligned}$$
(17)

Taking \({\Delta } t=30\) min (period of data averaging before storage), \(\overline{u^{\prime }w^{\prime }}_{s}\approx 0.015\) m\(^{2}\) s\(^{-2}\), \(\overline{\theta ^{\prime }w^{\prime }}_{s}\approx 0.01\) m K s\(^{-1}\) (typical values for Dome C), \(z=0.9\) m for the temperature measurement height and \(z=2.35\) m for the wind measurement height in the surface layer, we obtain \({\Delta } \theta < 2\) K and \({\Delta } u < 1.1\) m s\(^{-1}\). In other words, the stationary conditions to apply the MO theory are guaranteed if the variations in temperature and wind speed over a 30-min period are lower than the aforementioned thresholds. To ensure this condition was met, we removed all the 30-min data for which the differences in temperature or wind speed from the previous half-hour were above the thresholds \({\Delta } \theta \) and \({\Delta } u\) respectively.

1.2 Appendix 2: How Does an Error in \(\theta _{*}\) Affect the Estimation of \(z_{0t}\) Using MO Similarity Equations?

Equation 3 applied to measurements at height \(z_{t}\) and the ground can be written as,

$$\begin{aligned} \theta (z_{t})-\theta _{s}=\frac{\theta _{*}}{\kappa }\left( \ln \left( \frac{z_{t}}{z_{0t}}\right) -\psi _{h}\left( \frac{z_{t}}{L}\right) \right) , \end{aligned}$$
(18)

and writing \(\theta (z_{t})-\theta _{s}=\Delta \theta \), this directly leads to an expression for \(z_{0t}\):

$$\begin{aligned} \ln (z_{0t})=\ln (z_{t})-\psi _{h}\left( \frac{z_{t}}{L}\right) +\frac{\kappa {\Delta } \theta }{\theta _{*}}. \end{aligned}$$
(19)

The dependence of \(\ln (z_{0t})\) on the measured \(\theta _{*}\) by a sonic thermo-anemometer is thus,

$$\begin{aligned} \frac{\partial \ln (z_{0t})}{\partial \theta _{*}}= \frac{\kappa {\Delta } \theta }{\theta _{*} ^{2}}- \frac{\partial \phi _{h}}{\partial \theta _{*}}, \end{aligned}$$
(20)

and in near-neutral conditions, \(\partial \phi _{h}/\partial \theta _{*}\) is negligible, and thus an error \(\partial \theta _{*}\) on \(\theta _{*}\) results in an error \(\partial \ln (z_{0t})\) proportional to \(\theta _{*} ^{-2}\). Given that \(\theta _{*}\) is very small when the ABL stratification tends to neutrality, the error made on \(z_{0t}\) is significant.

1.3 Appendix 3: Dimensionless Gradients for Stable Conditions

We recall here the relations for the dimensionless gradients taken from the literature and compared in the present study; \(\zeta \) denotes the stability parameter z / L.

  • Holtslag and De Bruin (1988):

    $$\begin{aligned} \phi _{m}(\zeta )=\phi _{h}(\zeta )=1+0.7\zeta +0.75\zeta (6-0.35\zeta )\exp (-0.35\zeta ). \end{aligned}$$
    (21)
  • Grachev et al. (2007):

    $$\begin{aligned} \phi _{m}(\zeta )= & {} 1+\frac{6.5\zeta (1+\zeta )^{1/3}}{1.3+\zeta }, \end{aligned}$$
    (22)
    $$\begin{aligned} \phi _{h}(\zeta )= & {} 1+\frac{5\zeta +5\zeta ^{2}}{1+3\zeta +\zeta ^{2}}. \end{aligned}$$
    (23)
  • King and Anderson (1994)

    $$\begin{aligned} \phi _{m}(\zeta )= & {} 1+5.7\zeta \quad \text {and} \quad \phi _{m}(\zeta )<12, \end{aligned}$$
    (24)
    $$\begin{aligned} \phi _{h}(\zeta )= & {} 0.95+4.99\zeta \quad \text {and} \quad \phi _{h}(\zeta )<12. \end{aligned}$$
    (25)
  • Lettau (1979)

    $$\begin{aligned} \phi _{m}(\zeta )= & {} (1+4.5\zeta )^{3/4}, \end{aligned}$$
    (26)
    $$\begin{aligned} \phi _{h}(\zeta )= & {} (1+4.5\zeta )^{3/2}. \end{aligned}$$
    (27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignon, E., Genthon, C., Barral, H. et al. Momentum- and Heat-Flux Parametrization at Dome C, Antarctica: A Sensitivity Study. Boundary-Layer Meteorol 162, 341–367 (2017). https://doi.org/10.1007/s10546-016-0192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0192-3

Keywords

Navigation