Boundary-Layer Meteorology

, Volume 159, Issue 3, pp 469–494 | Cite as

Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum

  • Andrey A. Grachev
  • Laura S. Leo
  • Silvana Di Sabatino
  • Harindra J. S. Fernando
  • Eric R. Pardyjak
  • Christopher W. Fairall


Measurements of small-scale turbulence made in the atmospheric boundary layer over complex terrain during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured on four towers deployed along the east lower slope (2–4\(^{\circ }\)) of Granite Mountain near Salt Lake City in Utah, USA. The multi-level (up to seven) observations made during a 30-day long MATERHORN field campaign in September–October 2012 allowed the study of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence statistics (e.g., fluxes, variances, spectra, and cospectra) and their variations in katabatic flow. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along-slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The momentum flux is directed downward (upward) whereas the along-slope heat flux is downslope (upslope) below (above) the wind maximum. This suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the along-slope heat flux) to derive the height where the flux becomes zero. It is shown that the standard deviations of all wind-speed components (and therefore of the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases when the destructive effect of vertical heat flux is completely cancelled by the generation of turbulence due to the along-slope heat flux. Turbulence above the wind-speed maximum is decoupled from the surface, and follows the classical local \(z\)-less predictions for the stably stratified boundary layer.


Complex terrain Horizontal heat flux Katabatic flows MATERHORN Program Stable boundary layer 



The MATERHORN Program was funded by the Office of Naval Research with award # N00014-11-1-0709, with additional funding from the Army Research Office, Air Force Weather Agency, University of Notre Dame, and University of Utah. Special thanks go to Evgeni Fedorovich who pointed out the importance of the horizontal (along-slope) heat flux in the net buoyancy term in the TKE equation and in the modified Monin–Obukhov stability parameter. We also appreciate useful comments and suggestions from three anonymous reviewers.


  1. Axelsen SL, van Dop H (2009a) Large-eddy simulation of katabatic winds. Part 1: comparison with observations. Acta Geophys 57(4):803–836. doi: 10.2478/s11600-009-0041-6 Google Scholar
  2. Axelsen SL, van Dop H (2009b) Large-eddy simulation of katabatic winds. Part 2: sensitivity study and comparison with analytical models. Acta Geophys 57(4):837–856. doi: 10.2478/s11600-009-0042-5 Google Scholar
  3. Axelsen SL, Shapiro A, Fedorovich E, van Dop H (2010) Analytical solution for katabatic flow induced by an isolated cold strip. Environ Fluid Mech 10(4):387–414. doi: 10.1007/s10652-009-9158-z CrossRefGoogle Scholar
  4. Banta RM, Pichugina YL, Brewer WA (2006) Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J Atmos Sci 63(11):2700–2719CrossRefGoogle Scholar
  5. Brooks IM, Söderberg S, Tjernström M (2003) The turbulence structure of the stable atmospheric boundary layer around a coastal headland: aircraft observations and modeling results. Boundary-Layer Meteorol 107(3):531–559. doi: 10.1023/A:1022822306571 CrossRefGoogle Scholar
  6. Clements WE, Archuleta JA, Hoard DE (1989) Mean structure of the nocturnal drainage flow in a deep valley. J Appl Meteorol 28(6):457–462CrossRefGoogle Scholar
  7. Denby B (1999) Second-order modelling of turbulence in katabatic flows. Boundary-Layer Meteorol 92(1):67–100. doi: 10.1023/A:1001796906927 CrossRefGoogle Scholar
  8. Denby B, Smeets CJPP (2000) Derivation of turbulent flux profiles and roughness lengths from katabatic flow dynamics. J Appl Meteorol 39(9):1601–1612CrossRefGoogle Scholar
  9. Egger J (1990) Thermally forced flows: theory. In: Blumen W (ed) Atmospheric processes over complex terrain. American Meteorological Society, Washington DC, pp 43–57 (323 pp)Google Scholar
  10. Fedorovich E, Shapiro A (2009) Structure of numerically simulated katabatic and anabatic flows along steep slopes. Acta Geophys 57(4):981–1010. doi: 10.2478/s11600-009-0027-4 CrossRefGoogle Scholar
  11. Fernando HJS, Pardyjak ER, Di Sabatino S, Chow FK, De Wekker SFJ, Hoch SW, Hacker J, Pace JC, Pratt T, Pu Z, Steenburgh JW, Whiteman CD, Wang Y, Zajic D, Balsley B, Dimitrova R, Emmitt GD, Higgins CW, Hunt JCR, Knievel JC, Lawrence D, Liu Y, Nadeau DF, Kit E, Blomquist BW, Conry P, Coppersmith RS, Creegan E, Felton M, Grachev A, Gunawardena N, Hang C, Hocut CM, Huynh G, Jeglum ME, Jensen D, Kulandaivelu V, Lehner M, Leo LS, Liberzon D, Massey JD, McEnerney K, Pal S, Price T, Sghiatti M, Silver Z, Thompson M, Zhang H, Zsedrovits T (2015) The MATERHORN - unraveling the intricacies of mountain weather. Bull Amer Meteor Society, In pressGoogle Scholar
  12. Geissbuhler P, Siegwolf R, Eugster W (2000) Eddy covariance measurements on mountain slopes: the advantage of surface-normal sensor orientation over a vertical set-up. Boundary-Layer Meteorol 96(3):371–392. doi: 10.1023/A:1002660521017 CrossRefGoogle Scholar
  13. Grachev AA, Fairall CW (2001) Upward momentum transfer in the marine boundary layer. J Phys Oceanogr 31(7):1698–1711CrossRefGoogle Scholar
  14. Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2013) The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Boundary-Layer Meteorol 147(1):51–82. doi: 10.1007/s10546-012-9771-0 CrossRefGoogle Scholar
  15. Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2015) Similarity theory based on the Dougherty-Ozmidov length scale. Q J R Meteorol Soc. doi: 10.1002/qj.2488
  16. Grisogono B (2003) Post-onset behaviour of the pure katabatic flow. Boundary-Layer Meteorol 107:157–175CrossRefGoogle Scholar
  17. Grisogono B, Axelsen SL (2012) A note on the pure katabatic wind maximum over gentle slopes. Boundary-Layer Meteorol 145(3):527–538CrossRefGoogle Scholar
  18. Grisogono B, Oerlemans J (2001a) Katabatic flow: analytic solution for gradually varying eddy diffusivities. J Atmos Sci 58(21):3349–3354CrossRefGoogle Scholar
  19. Grisogono B, Oerlemans J (2001b) A theory for the estimation of surface fluxes in simple katabatic flows. Q J R Meteorol Soc 127(578B):2725–2739CrossRefGoogle Scholar
  20. Grisogono B, Zovko Rajak D (2009) Assessment of Monin–Obukhov scaling over small slopes. Geofizika 26(1):101–108Google Scholar
  21. Haiden T, Whiteman CD (2005) Katabatic flow mechanisms on a low-angle slope. J Appl Meteorol 44(1):113–126CrossRefGoogle Scholar
  22. Hanley KE, Belcher SE (2008) Wave-driven wind jets in the marine atmospheric boundary layer. J Atmos Sci 65(8):2646–2660CrossRefGoogle Scholar
  23. Harris DL (1966) The wave-driven wind. J Atmos Sci 23(6):688–693CrossRefGoogle Scholar
  24. Hartogensis OK, De Bruin HAR (2005) Monin–Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorol 116(2):253–276. doi: 10.1007/s10546-004-2817-1 CrossRefGoogle Scholar
  25. Helmis CG, Papadopoulos KH (1996) Some aspects of the variation with time of katabatic flow over a simple slope. Q J R Meteorol Soc 122(531A):595–610. doi: 10.1002/qj.49712253103 CrossRefGoogle Scholar
  26. Hocut CM, Hoch SW, Fernando HJS, Leo LS, Di Sabatino S, Wang Y, Pardyjak ER, Whiteman CD (2015) Interactions between slope and valley flows. J Atmos Sci (in preparation)Google Scholar
  27. Horst TW, Doran JC (1986) Nocturnal drainage flow on simple slopes. Boundary-Layer Meteorol 34(3):263–286CrossRefGoogle Scholar
  28. Horst TW, Doran JC (1988) The turbulence structure of nocturnal slope flow. J Atmos Sci 45(4):605–616CrossRefGoogle Scholar
  29. Ingel’ LKh (2000) Nonlinear theory of slope flows. Russian Acad Sci Atmos Oceanic Phys (Izvestiya) 36:384–389Google Scholar
  30. Kaimal JC, Finnigan JJ (1994) Atmospheric Boundary Layer Flows: Their Structure and Measurements. Oxford University Press, New York 289 ppGoogle Scholar
  31. Kavčič I, Grisogono B (2007) Katabatic flow with Coriolis effect and gradually varying eddy diffusivity. Boundary-Layer Meteorol 125(2):377–387. doi: 10.1007/s10546-007-9167-8 CrossRefGoogle Scholar
  32. Kochendorfer J, Meyers TP, Frank J, Massman WJ, Heuer MW (2012) How well can we measure the vertical wind speed? Implications for fluxes of energy and mass. Boundary-Layer Meteorol 145(2):383–398. doi: 10.1007/s10546-012-9738-1 CrossRefGoogle Scholar
  33. Kouznetsov R, Tisler P, Palo T, Vihma T (2013) Evidence of very shallow summertime katabatic flows in Dronning Maud Land, Antarctica. J Appl Meteorol Climatol 52(1):164–168CrossRefGoogle Scholar
  34. Łobocki L (2014) Surface-layer flux–gradient relationships over inclined terrain derived from a local equilibrium, turbulence closure model. Boundary-Layer Meteorol 150(3):469–483. doi: 10.1007/s10546-013-9888-9 CrossRefGoogle Scholar
  35. Lykosov VN, Gutman LN (1972) Turbulent boundary layer above a sloping underlying surface. Izvestiya. Acad Sci USSR. Atmos Oceanic Phys 8:799–809Google Scholar
  36. Mahrt L (1982) Momentum balance of gravity flows. J Atmos Sci 39(12):2701–2711CrossRefGoogle Scholar
  37. Manins PC, Sawford BL (1979) Katabatic winds: A field case study. Q J R Meteorol Soc 105(446):1011–1025. doi: 10.1002/qj.49710544618 CrossRefGoogle Scholar
  38. Mauder MA (2013) A comment on “How well can we measure the vertical wind speed? Implications for fluxes of energy and mass” By Kochendorfer, et al. Boundary-Layer Meteorol 147(2):329–335. doi: 10.1007/s10546-012-9794-6 CrossRefGoogle Scholar
  39. Meesters AGCA, Bink NJ, Henneken EAC, Vugts HF, Cannemeijer F (1997) Katabatic wind profiles over the Greenland ice sheet: observation and modelling. Boundary-Layer Meteorol 85(3):475–496. doi: 10.1023/A:1000514214823 CrossRefGoogle Scholar
  40. Monti P, Fernando HJS, Princevac M, Chan WC, Kowalewski TA, Pardyjak ER (2002) Observations of flow and turbulence in the nocturnal boundary layer over a slope. J Atmos Sci 59(17):2513–2534CrossRefGoogle Scholar
  41. Monti P, Fernando HJS, Princevac M (2014) Waves and turbulence in katabatic winds. Environ Fluid Mech 14(2):431–450. doi: 10.1007/s10652-014-9348-1 CrossRefGoogle Scholar
  42. Nadeau DF, Pardyjak ER, Higgins CW, Huwald H, Parlange MB (2013a) Flow during the evening transition over steep Alpine slopes. Q J R Meteorol Soc 139(672A):607–624. doi: 10.1002/qj.1985 CrossRefGoogle Scholar
  43. Nadeau DF, Pardyjak ER, Higgins CW, Parlange MB (2013b) Similarity scaling over a steep alpine slope. Boundary-Layer Meteorol 147(3):401–419. doi: 10.1007/s10546-012-9787-5 CrossRefGoogle Scholar
  44. Neff WD (1990) Remote sensing of atmospheric processes over complex terrain. In: Blumen W (ed) Atmospheric processes over complex terrain. Meteorological Monographs, vol 23, No. 45. American Meteorology Society, Boston, MA, pp 173–228Google Scholar
  45. Neff WD, King CW (1987) Observations of complex terrain flows using acoustic sounders: experiments, topography and winds. Boundary-Layer Meteorol 40(4):363–392. doi: 10.1007/BF00116103 CrossRefGoogle Scholar
  46. Neff WD, King CW (1988) Observations of complex terrain flows using acoustic sounders: drainage flow structure and evolution. Boundary-Layer Meteorol 43(1–2):15–41. doi: 10.1007/BF00153967 CrossRefGoogle Scholar
  47. Oerlemans J, Grisogono B (2002) Glacier wind and parameterisation of the related surface heat flux. Tellus 54:440–452CrossRefGoogle Scholar
  48. Oerlemans J, Björnsson H, Kuhn M, Obleitner F, Palsson F, Smeets CJPP, Vugts HF, de Wolde J (1999) Glacio-meteorological investigations on Vatnajökull, Iceland, summer 1996: an overview. Boundary-Layer Meteorol 92(1):3–26. doi: 10.1023/A:1001856114941 CrossRefGoogle Scholar
  49. Oldroyd HJ, Katul G, Pardyjak ER, Parlange MB (2014) Momentum balance of katabatic flow on steep slopes covered with short vegetation. Geophys Res Lett 41: doi: 10.1002/2014GL060313
  50. Papadopoulos KH, Helmis CG, Soilemes AT, Kalogiros J, Papageorgas PG, Asimakopoulos DN (1997) The structure of katabatic flows down a simple slope. Q J R Meteorol Soc 123(542B):581–1601. doi: 10.1002/qj.49712354207 Google Scholar
  51. Pardyjak ER, Fernando HJS, Hunt JCR, Grachev AA, Anderson JA (2009) A case study of the development of nocturnal slope flows in a wide open valley and associated air quality implications. Meteorologische Zeitschrift 18(1):85–100CrossRefGoogle Scholar
  52. Parmhed O, Oerlemans J, Grisogono B (2004) Describing surface-fluxes in katabatic flow on Breidamerkurjökull, Iceland. Q J R Meteorol Soc 130(598):1137–1151CrossRefGoogle Scholar
  53. Pichugina YL, Banta RM (2010) Stable boundary layer depth from high-resolution measurements of the mean wind profile. J Appl Meteorol Climatol 49(1):20–35CrossRefGoogle Scholar
  54. Poulos G, Zhong S (2008) An observational history of small-scale katabatic winds in mid-latitudes. Geogr Compass 2(6):1798–1821. doi: 10.1111/j.1749-8198.2008.00166.x CrossRefGoogle Scholar
  55. Prandtl L (1942) Führer durch die Strömungslehre. Vieweg und Sohn, Braunschweig 382 ppGoogle Scholar
  56. Princevac M, Fernando HJS, Whiteman CD (2005) Turbulent entrainment into nocturnal gravity-driven flow. J Fluid Mech 533:259–268CrossRefGoogle Scholar
  57. Princevac M, Hunt JCR, Fernando HJS (2008) Quasi-steady katabatic winds on slopes in wide valleys: hydraulic theory and observations. J Atmos Sci 65(2):627–643CrossRefGoogle Scholar
  58. Renfrew IA (2004) The dynamics of idealized katabatic flow over a moderate slope and ice shelf. Q J R Meteorol Soc 130(598):1023–1045. doi: 10.1256/qj.03.24 CrossRefGoogle Scholar
  59. Renfrew IA, Anderson PS (2006) Profiles of katabatic flow in summer and winter over Coats Land, Antarctica. Q J R Meteorol Soc 132(616A):779–802. doi: 10.1256/qj.05.148 CrossRefGoogle Scholar
  60. Shapiro A, Fedorovich E (2008) Coriolis effects in homogeneous and inhomogeneous katabatic flows. Q J R Meteorol Soc 134(631):353–370. doi: 10.1002/qj.217 CrossRefGoogle Scholar
  61. Shapiro A, Fedorovich E (2014) A boundary-layer scaling for turbulent katabatic flow. Boundary-Layer Meteorol 153(1):1–17. doi: 10.1007/s10546-014-9933-3 CrossRefGoogle Scholar
  62. Skyllingstad ED (2003) Large-eddy simulation of katabatic flows. Boundary-Layer Meteorol 106(2):217–243. doi: 10.1023/A:1021142828676 CrossRefGoogle Scholar
  63. Smedman A-S, Tjernström M, Högström U (1994) Near-neutral marine atmospheric boundary layer with no surface shearing stress: a case study. J Atmos Sci 51(23):3399–3411CrossRefGoogle Scholar
  64. Smeets CJPP, Duynkerke PG, Vugts HF (1998) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part I: a combination of katabatic and large-scale forcing. Boundary-Layer Meteorol 87(1):117–145. doi: 10.1023/A:1000860406093 CrossRefGoogle Scholar
  65. Smeets CJPP, Duynkerke PG, Vugts HF (2000) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part II: pure katabatic forcing conditions. Boundary-Layer Meteorol 97(1):73–107. doi: 10.1023/A:1002738407295 CrossRefGoogle Scholar
  66. Smith CM, Porté-Agel F (2013) An intercomparison of subgrid models for large-eddy simulation of katabatic flows. Q J R Meteorol Soc. doi: 10.1002/qj.2212 Google Scholar
  67. Smith CM, Skyllingstad ED (2005) Numerical simulation of katabatic flow with changing slope angle. Mon Weather Rev 133:3065–3080CrossRefGoogle Scholar
  68. Söderberg S, Parmhed O (2006) Numerical modelling of katabatic flow over a melting outflow glacier. Boundary-Layer Meteorol 120(3):509–534. doi: 10.1007/s10546-006-9059-3 CrossRefGoogle Scholar
  69. Söderberg S, Tjernström M (2004) Modeling the turbulent structure of the katabatic jet. In: 16th Symposium on boundary layers and turbulence, Portland, ME, 9–13 August 2004. American Meteorological Society, 4 pp.
  70. Stiperski I, Kavčič I, Grisogono B, Durran DR (2007) Including Coriolis effects in the Prandtl model for katabatic flow. Q J R Meteorol Soc 133:101–106CrossRefGoogle Scholar
  71. Stone GL, Hoard DE (1989) Low-frequency velocity and temperature fluctuations in katabatic valley flows. J Appl Meteorol 28(6):477–488CrossRefGoogle Scholar
  72. Tse KL, Mahalov A, Nicolaenko B, Fernando HJS (2003) Quasi-equilibrium dynamics of shear-stratified turbulence in a model tropospheric jet. J Fluid Mech 496:73–103. doi: 10.1017/S0022112003006487 CrossRefGoogle Scholar
  73. Van den Broeke M (1997) Momentum, heat, and moisture budgets of the katabatic wind layer over a midlatitude glacier in summer. J Appl Meteorol 36(6):763–774CrossRefGoogle Scholar
  74. Van der Avoird E, Duynkerke PG (1999) Turbulence in a katabatic flow. Does it resemble turbulence in a stable boundary layer over flat surfaces? Boundary-Layer Meteorol 92(1):39–66. doi: 10.1023/A:1001744822857 Google Scholar
  75. Van Gorsel E, Christen A, Feigenwinter C, Parlow E, Vogt R (2003) Daytime turbulence statistics above a steep forested slope. Boundary-Layer Meteorol 109(3):311–329. doi: 10.1023/A:1025811010239 CrossRefGoogle Scholar
  76. Viana S, Terradellas E, Yagüe C (2010) Analysis of gravity waves generated at the top of a drainage flow. J Atmos Sci 67(12):3949–3966CrossRefGoogle Scholar
  77. Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, New York 376 ppGoogle Scholar
  78. Whiteman CD, Zhong S (2008) downslope flows on a low-angle slope and their interactions with valley inversions. Part I: observations. J Appl Meteorol Climatol 47(7):2023–2038CrossRefGoogle Scholar
  79. Wyngaard JC, Coté OR (1972) Cospectral similarity in the atmospheric surface layer. Q J R Meteorol Soc 98:590–603CrossRefGoogle Scholar
  80. Zammett RJ, Fowler AC (2007) Katabatic winds on ice sheets: a refinement of the Prandtl model. J Atmos Sci 64(7):2707–2716CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Andrey A. Grachev
    • 1
    • 2
  • Laura S. Leo
    • 2
  • Silvana Di Sabatino
    • 2
    • 3
  • Harindra J. S. Fernando
    • 2
  • Eric R. Pardyjak
    • 4
  • Christopher W. Fairall
    • 5
  1. 1.NOAA Earth System Research Laboratory/Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  2. 2.Department of Civil & Environmental Engineering & Earth SciencesUniversity of Notre DameNotre DameUSA
  3. 3.Department of Physics and AstronomyUniversity of BolognaBolognaItaly
  4. 4.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA
  5. 5.NOAA Earth System Research LaboratoryBoulderUSA

Personalised recommendations