Boundary-Layer Meteorology

, Volume 156, Issue 1, pp 131–144 | Cite as

A New Parametrization of Mixing Length in an Urban Canopy Derived from a Large-Eddy Simulation Database for Tokyo



Average horizontal wind velocity in an urban canopy is mainly determined by a balance between flow deceleration caused by the drag force of buildings and flow acceleration from the momentum flux gradient in the canopy. To express the transport of momentum in an urban canopy, mixing length is often used to calculate diffusivity there. A new parametrization for mixing length is introduced for a one-dimensional multilayer urban canopy model (UCM). A database from large-eddy simulations using actual urban morphology for Tokyo is used for this parametrization. The derived mixing length is described as a function of the non-dimensional height raised to the power of \(q\), where \(q < 1\). The \(q\) value and constants of the function also depend on the selection of canopy height. The mixing length profile is closely related to that of the average plane area index of the buildings in the study area. Recalculation of mean horizontal wind velocity using the new parametrization of mixing length for Tokyo slightly improved the multilayer UCM results.


Large-eddy simulation database Multilayer urban canopy model  Plane area index Urban canopy height Vertical diffusivity 



This study was supported by the Research Program on Climate Change Adaptation, promoted by the Ministry of Education, Culture, Sports, Science and Technology of Japan.


  1. Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in neutral atmosphere. J Geophys Res 67:3095–3102CrossRefGoogle Scholar
  2. Castillo MC, Inagaki A, Kanda M (2011) The effects of inner and outer layer turbulence of a convective boundary layer in the near-neutral inertial sublayer over an urban-like surface. Boundary-Layer Meteorol 140:453–469CrossRefGoogle Scholar
  3. Coceal O, Belcher SE (2004) A canopy model of mean winds through urban areas. Q J R Meteorol Soc 130:1349–1372CrossRefGoogle Scholar
  4. Coceal O, Thomas TG, Castro IP, Belcher SE (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol 121:491–519CrossRefGoogle Scholar
  5. Gambo K (1978) Notes on the turbulence closure model for atmospheric boundary layers. J Meteorol Soc Jpn 56:466–480Google Scholar
  6. Grimmond CSB, Blackett M, Best MJ, Barlow J, Baik J-J, Belcher SE, Bohnenstengel SI, Calmet I, Chen F, Dandou A, Fortuniak K, Gouvea ML, Hamdi R, Hendry M, Kawai T, Kawamoto Y, Kondo H, Krayenhoff ES, Lee S-H, Loridan T, Martilli A, Masson V, Miao S, Oleson K, Pigeon G, Porson A, Ryu Y-H, Salamanca F, Shashua-Bar L, Steeneveld GJ, Tombrou M, Voogt J, Young D, Zhang N (2010) The international urban energy balance models comparison project: first results from phase 1. J Appl Meteorol Clim 49:1268–1292CrossRefGoogle Scholar
  7. Grimmond CSB, Blackett B, Best MJ, Baik J-J, Belcher SE, Beringer J, Bohnenstengel SI, Calmet I, Chen F, Coutts A, Dandou A, Fortuniak K, Gouvea ML, Hamdi R, Hendry M, Kanda M, Kawai T, Kawamoto Y, Kondo H, Krayenhoff ES, Lee S-H, Loridan T, Martilli A, Masson V, Miao S, Oleson K, Ooka R, Pigeon G, Porson A, Ryu Y-H, Salamanca F, Steeneveld GJ, Tombrou M, Voogt JA, Young DT, Zhang N (2011) Initial results from Phase 2 of the international urban energy balance model comparison. Int J Climatol 31:244–272CrossRefGoogle Scholar
  8. Ihara T, Genchi Y, Sato T, Yamaguchi K, Endo Y (2008) City-block-scale sensitivity of electricity consumption to air temperature and air humidity in business districts of Tokyo, Japan. Energy 33:1634–1645CrossRefGoogle Scholar
  9. Inagaki A, Castillo MC, Yamashita Y, Kanda M, Takimoto H (2012) Large eddy simulation study of coherent flow structures within a cubical canopy. Boundary-Layer Meteorol 142:207–222CrossRefGoogle Scholar
  10. Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parametrization for real urban surfaces. Boundary-Layer Metetorol 148:357–377CrossRefGoogle Scholar
  11. Kawamoto Y, Ooka R (2009) Development of urban climate analysis model using MM5 Part 2—incorporating an urban canopy model to represent the effect of buildings. J Environ Eng 74:1009–1018CrossRefGoogle Scholar
  12. Kikegawa Y, Genchi Y, Yoshikado H, Kondo H (2003) Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban building’s energy-demands. Appl Energy 76:449–466CrossRefGoogle Scholar
  13. Kikegawa Y, Tanaka A, Ohashi Y, Ihara T, Shigeta Y (2014) Observed and simulated sensitivities of summertime urban surface air temperatures to anthropogenic heat in downtown areas of two Japanese Major Cities, Tokyo and Osaka. Theor Appl Climatol 117:175–193CrossRefGoogle Scholar
  14. Kondo H, Liu F-H (1998) A study on the urban thermal environment obtained through a one-dimensional urban canopy model. J Jpn Soc Atmos Environ 33:179–192 (in Japanese)Google Scholar
  15. Kondo H, Kikegawa Y (2003) Temperature variation in the urban canopy with anthropogenic energy use. Pure Appl Geophys 160:317–324CrossRefGoogle Scholar
  16. Kondo H, Genchi Y, Kikegawa Y, Ohashi Y, Yoshikado H, Komiyama H (2005) Development of a multi-layer urban canopy model for the analysis of energy consumption in a big city: structure of the urban canopy model and its basic performance. Boundary-Layer Meteorol 116:395–421CrossRefGoogle Scholar
  17. Kondo H, Tokairin T, Kikegawa Y (2008) Calculation of wind in a Tokyo urban area with a mesoscale model including a multi-layer urban canopy model. J Wind Eng Ind Aerodyn 96:1655–1666CrossRefGoogle Scholar
  18. Kondo J, Akashi S (1976) Numerical studies on the two-dimensional flow in horizontally homogeneous canopy layers. Boundary-Layer Meteorol 10:255–272CrossRefGoogle Scholar
  19. Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Boundary-Layer Meteorol 101:329–358CrossRefGoogle Scholar
  20. Lee S-H, Park S-U (2008) A vegetated urban canopy model for meteorological and environmental modelling. Boundary-Layer Meteorol 126:73–102CrossRefGoogle Scholar
  21. Leonardi S, Castro IP (2010) Channel flow over large cube roughness: a direct numerical simulation study. J Fluid Mech 651:519–539CrossRefGoogle Scholar
  22. Letzel MO, Krane M, Raasch S (2008) High resolution urban large-eddy simulation studies from street canyon to neighborhood scale. Atmos Environ 42:8770–8784CrossRefGoogle Scholar
  23. Martilli A, Clappier A, Rotach MW (2002) An urban surface exchange parametrization for mesoscale models. Boundary-Layer Meteorol 104:261–304CrossRefGoogle Scholar
  24. Martilli A, Santiago JL (2007) CFD simulation of airflow over a regular array of cubes. Part II: Analysis of spatial average properties. Boundary-Layer Meteorol 122:635–654CrossRefGoogle Scholar
  25. Maruyama T (1993) Optimization of roughness parameters for staggered arrayed cubic blocks using experimental data. J Wind Eng Ind Aerodyn 46–47:165–171CrossRefGoogle Scholar
  26. Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31:1791–1806CrossRefGoogle Scholar
  27. Monin AS, Yaglom AM (1971) Statistical fluid mechanics: mechanics of turbulence, vol I. The MIT Press, Cambridge, 769 ppGoogle Scholar
  28. Ohashi Y, Genchi Y, Kikegawa Y, Kondo H, Yoshikado H, Hirano Y (2007) Influence of air-conditioning waste heat on air temperature in Tokyo office areas during summer: numerical experiments using an urban canopy model coupled with a building energy model. J Appl Meteorol Climatol 46:66–81CrossRefGoogle Scholar
  29. Raasch S, Schröter M (2001) PALM—a large-eddy simulation model performing on massively parallel computers. Meteorol Z 10:363–372CrossRefGoogle Scholar
  30. Salamanca F, Martilli A, Tewari M, Chen F (2011) A study of the urban boundary layer using different urban parameterizations and high resolution urban canopy parameters with WRF. J Appl Meteorol Climatol 50:1107–1128CrossRefGoogle Scholar
  31. Tanaka S, Sugawara H, Narita K, Yokoyama H, Misaka I, Matsushima D (2011) Zero-plane displacement height in a highly built-up area of Tokyo. Sola 7:93–96CrossRefGoogle Scholar
  32. Thatcher M, Hurley P (2012) Simulating Australian urban climate in a mesoscale atmospheric numerical model. Bound-Layer Meteorol 142:149–175CrossRefGoogle Scholar
  33. Tokairin T, Kondo H, Yoshikado H, Genchi Y, Ihara T, Kikegawa Y, Hirano Y, Asahi K (2006) Numerical study on the effect of buildings on temperature variation in urban and suburban area in Tokyo. J Meteorol Soc Jpn 84:921–937CrossRefGoogle Scholar
  34. Watanabe T, Kondo J (1990) The influence of canopy structure and density upon the mixing length within and above vegetation. J Meteorol Soc Jpn 68:227–235Google Scholar
  35. Xie Z-T, Coceal O, Castro IP (2008) Large-eddy simulation of flows over random urban-like obstacles. Boundary-Layer Meteorol 129:1–23CrossRefGoogle Scholar
  36. Yokoyama O, Gamo M, Yamamoto S (1979) The vertical profiles of turbulent quantities in the atmospheric boundary layer. J Meteorol Soc Jpn 57:264–272Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Research Institute for Environmental Management TechnologyNational Institute of Advanced Industrial ScienceTsukubaJapan
  2. 2.Tokyo Institute of TechnologyMeguro-ku, TokyoJapan

Personalised recommendations