Skip to main content

Advertisement

Log in

A Model for the Transport of Sea-Spray Aerosols in the Coastal Zone

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We study the dynamics of sea-spray particles in the coastal region of La Reunion Island on the basis of numerical simulations using the transport aerosol model MACMod (Marine Aerosol Concentration Model) and a survey of the aerosol size distributions measured at four locations at two different heights in the north-west part of the island. This allows evaluation of the performance of our model in case of pure marine air masses with implementation of accurate boundary conditions. First of all, an estimate of the aerosol concentration at 10-m height at the upwind boundary of the calculation domain is obtained using a revisited version of the MEDEX (Mediterranean Extinction) model. Estimates of the vertical profile of aerosol concentrations are then provided using aerosol data obtained at two different heights at the upwind boundary of the calculation domain. A parametrization of the vertical profiles of aerosol concentrations for maritime environment is proposed. The results are then compared to the vertical profiles of 0.532 \(\upmu \)m aerosol particle extinction coefficient obtained from lidar data provided by the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and also to the data provided by the Aerosol Robotic Network (AERONET). This allows validation of the complete vertical profiles in the mixed layer and shows the validity of satellite data for determination of the vertical profiles. Two kinds of simulation were made: one without a particle advection flux at the upwind boundary of the numerical domain, whereas the second simulation was made with a particle advection flux. In the first case, the influence of the distance to the shoreline on the local sea-spray dynamics is investigated. In the second set of simulation, the particles issued from the local production in the surf zone near the shoreline are mixed with aerosols advected from the remote ocean. A good agreement between the model calculations using our boundary conditions and the data was found. The present results then attest the ability of this kind of model, as a first approach to predicting the local transport of sea-spray particles in a pure marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bendersky S, Kopeika N, Blaunstein N (2004) Effects of attenuation of 1.064 \(\mu \)m visual optical waves by water vapor aerosols and fog within horizontal atmospheric communication links. Opt Eng 43(3):539–552

    Article  Google Scholar 

  • Brockmann JE (1993) Aerosol transport in sampling lines and inlets. In: Willeke K, Baron PA (eds) Aerosol measurement, principles techniques and applications. Van Nostrand Reinhold, New York, pp 77–111

    Google Scholar 

  • Campbell JR, Reid JS, Westphal DL, Zhang J, Tackett JL, Chew BN, Welton EJ, Shimizu A, Sugimoto N, Aoki K, Winker DM (2013) Characterizing the vertical profile of aerosol particle extinction and linear depolarization over South-east Asia and the Maritime Continent: the 2007–2009 view from CALIOP. Atmos Res 122:520–543

    Article  Google Scholar 

  • De Leeuw G (1989) Modeling of extinction and backscatter profiles in the marine mixed layer. Appl Opt 28(7):1356–1359

    Article  Google Scholar 

  • Demoisson A (2014) Etude de la source et du transport des aérosols marins en zone côtière méditerranéenne. Ph-D Thesis-University of Toulon 345 pp

  • Demoisson A, Tedeschi G, Piazzola J (2013) A model for the atmospheric transport of sea-salt particles in coastal areas. Atmos Res 132–133:144–153. doi:10.1016/j.atmosres.2013.04.002

    Article  Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. NOAA Air Resource Lab., Silver Spring, MD. http://www.arl.noaa.gov/ready/hysplit4.html

  • Fairall CW, Davidson KL (1986) Dynamics and modelling of aerosols in the marine atmospheric boundary layer. In: Monahan, Niocaill Mc (eds) Oceanic whitecaps. D. Reidel Publishing Company, Dordrecht, pp 195–208

    Chapter  Google Scholar 

  • Ford B, Heald CL (2012) An A-train and model perspective on the vertical distribution of aerosols and CO in the Northern Hemisphere. J Geophys Res 117(D06211). doi:10.1029/2011JD016977

  • Fitzgerald JW (1991) Marine aerosols: a review. Atmos Environ 25(A):523–545

    Google Scholar 

  • Fitzgerald JW (1989) Model of the aerosol extinction profile in a well-mixed marine boundary layer. Appl Opt 28(16):3534–3538

    Article  Google Scholar 

  • Gathman SG (1983) Optical properties of the marine aerosol as predicted by the Navy aerosol model. Opt Eng 22:57–62

    Article  Google Scholar 

  • Hsu SA (1986) A mechanism for the increase of wind stress (drag) coefficient with wind speed over water surfaces: a parametric model. J Phys Oceanogr 16:144–150

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2013) 30 September 2013 Working group I contribution to the IPCC Fifth Assessment Report-Climate change 2013: The physical science Basis- Final Draft Underlying Scientific-Technical Assessment, accepted but not approved in detail by the 12th Session of Working Group I and the 36th Session of the IPCC on 26 September 2013 in Stockholm, Sweden

  • Jaenicke R (1984) Physical aspects of atmospheric aerosol. In: Gerbard HE, Deepak A (eds) Aerosols and their climatic effects. A Deepak Publishing, Hampton, pp 7–34

    Google Scholar 

  • Knipping EM, Dabdub D (2003) Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone. Environ Sci Technol 37(2):275–284. doi:10.1021/es025793z

    Article  Google Scholar 

  • King MD, Kaufman Y, Menzel P, Tanré D (1992) Remote sensing of cloud, aerosol and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Trans Geosci Remote Sens 30:2–27

    Article  Google Scholar 

  • Laskin A, Gaspar DJ, Cowin JP, Colson SD, Finlayson-Pitts BJ (2003) Reactions at interfaces as a source of sulfate formation in sea-salt particles. Science 301(5631):340–344. doi:10.1126/science.1085374

    Article  Google Scholar 

  • Lewis R, Schwartz E (2004) Sea salt aerosol production: mechanisms, methods, measurements and models—a critical review, vol 152. Geophysical Monograph Series. Wiley/American Geophysical Union, New York/Washington, 414 pp

  • Mallet M, Roger JC, Despiau S, Dubovik O, Putaud JP (2003) Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE. Atmos Res 69(1–2):73–97

    Article  Google Scholar 

  • Mie G (1908) Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der physik 25:377–445

    Article  Google Scholar 

  • Mulcahy JP, O’Dowd CD, Jennings SG, Ceburnis D (2008) Significant enhancement of aerosol optical depth in marine air under high wind conditions. Geophys Res Lett 35:L16810. doi:10.29/2008GL034303

    Article  Google Scholar 

  • Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. J Heat Mass Transfer 15:1787–1806

    Article  Google Scholar 

  • Piazzola J, Tedeschi G, Dolle A, Richard E, Vincent L (2013) Rapport final sur l’étude de la dynamique des particules d’aérosols sur la côte nord-ouest de l’ile de la Réunion, Direction de l’équipement Région Réunion, 101 pp

  • Piazzola J, Forget P, Lafon C, Despiau S (2009) Spatial variation of sea-spray fluxes over a Mediterranean coastal zone using a sea-state model. Boundary-Layer Meteorol 132(1):167–183. doi:10.1007/s10546-009-9386-2

    Article  Google Scholar 

  • Piazzola J, Kaloshin G (2005) Performance evaluation of the coastal aerosol extinction code “MEDEX” with data from the Black Sea. J Aerosol Sci 36(3):341–359

    Article  Google Scholar 

  • Piazzola J, Bouchara F, Van Eijk AMJ, De Leeuw G (2003) Development of the Mediterranean extinction code MEDEX. Opt Eng 42(4):912–924. doi:10.1117/1.1556765

    Article  Google Scholar 

  • Piazzola J, Despiau S (1998) The vertical variations of extinction and atmospheric transmission due to aerosol particles close above the sea surface in Mediterranean coastal zone. Opt Eng 37:1684–1695. doi:10.1117/1.601695

    Article  Google Scholar 

  • Piazzola J, Despiau S (1997a) Contribution of marine aerosols in the particle size distributions observed in Mediterranean coastal zone. Atmos Environ 31(18):2991–3009. doi:10.1016/S1352-2310(97)00088-5

    Article  Google Scholar 

  • Piazzola J, Despiau S (1997b) Vertical distribution of aerosol particles near the air-sea interface in coastal zone. J Aerosol Sci 28:1579–1599. doi:10.1016/S0021-8502(97)00020-7

    Article  Google Scholar 

  • Reid JS, Brooks B, Crahan KK, Hegg DA, Eck TF, O’Neill N, De Leeuw G et al (2006) Reconciliation of coarse mode sea-salt aerosol particle size measurements and parameterizations at a subtropical ocean receptor site. J Geophys Res 111(D02202). doi:10.1029/2005JD006200

  • Thornton EB, Guza RT (1983) Transformation of wave height distribution. J Geophys Res 88(C7):9779–9789

    Google Scholar 

  • Toba Y (1965) On the giant sea-salt particles in the atmosphere: II Theory of the vertical distribution in the 10-m layer over the ocean. Tellus 17:365–382

    Article  Google Scholar 

  • Tolman HL (2009) User manual and system documentation of WAVEWATCH III version 3.14. NOAA / NWS / NCEP / MMAB Technical Note 276, 194 pp

  • Tedeschi G, Piazzola J (2011) Development of a 2D marine aerosol transport model, application to the influence of thermal stability in the marine atmospheric boundary layer. Atmos Res 101:469–479

    Article  Google Scholar 

  • Van Eijk AMJ, Kusmierczyk-Michulec JT, Francius MJ, Tedeschi G, Piazzola J, Merritt DL, Fontana JD (2011) Sea-spray aerosol particles generated in the surf zone. J Geophys Res 116(D19210). doi:10.1029/2011JD015602

  • Yoon YJ, Ceburnis D, Cavalli F, Jourdan O, Putaud JP, Facchini MC, Decesari S, Fuzzi S, Sellegri K, Jennings SG, O’Dowd CD (2007) Seasonal characteristics of the physicochemical properties of North Atlantic marine atmospheric aerosols. J Geophys Res 112(D04206). doi:10.1029/2005JD007044

Download references

Acknowledgments

The authors wish to express their gratitude to the staff of Nortekmed for their contribution to the experimental campaign, the DDE of Saint-Denis for its administrative help and Leo Cohen and Marcel Moerman from the TNO for their technical support. They also thank Dr. Yasmine Bennounna for help in interpreting the satellite data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Piazzola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piazzola, J., Tedeschi, G. & Demoisson, A. A Model for the Transport of Sea-Spray Aerosols in the Coastal Zone. Boundary-Layer Meteorol 155, 329–350 (2015). https://doi.org/10.1007/s10546-014-9994-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-014-9994-3

Keywords

Navigation