Boundary-Layer Meteorology

, Volume 153, Issue 2, pp 327–337 | Cite as

Towards a Flux-Partitioning Procedure Based on the Direct Use of High-Frequency Eddy-Covariance Data

  • Luigi Palatella
  • Gianfranco Rana
  • Domenico Vitale
Research Note


Scanlon and Sahu (Water Resour Res 44(10):W10418, 2008) proposed an interesting method to estimate assimilation, respiration, evaporation and transpiration directly using high-frequency eddy-covariance measurements. In this note we critically revise this method and, in particular, using the Descartes’ rule of sign, we show that one branch of solutions can be directly neglected reducing the analytical complexity of the procedure. We also discuss the stability of the results of the method with respect to the input parameters, especially to the water-use efficiency.


Evaporation Photosynthesis Respiration Transpiration Water-use efficiency 



This work has been supported by the two Italian projects Biodati (D.M. 15421 4/07/2011) and CLIMESCO (FISR D.D. no. 285 20/02/2006). The experimental measurements are courtesy given by the National Research Project “Optimization of existing bioenergy chains for economic and environmental sustainability” (BIOSEA), funded by the Ministry of Agriculture, Food and Forestry Policies (MiPAAF), Italy. LP thanks the SSD PESCA and the RITMARE Italian Research Ministry (MIUR) Projects. DV has been supported by EC project ICOS-INWIRE (FPT/2007-2013, grant agreement n. 313169). We thank G. Lacorata for the suggestion of using the absolute value of \(\Delta \) in the numerical calculations.


  1. Bacon M (2004) Water use efficiency in plant biology. Blackwell, Oxford, 327 ppGoogle Scholar
  2. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434CrossRefGoogle Scholar
  3. Bink NJ, Meesters AGCA (1997) Comment on Estimation of surface heat and momentum fluxes using the flux variance method above uniform and non-uniform terrain by Katul et al. 1995. Boundary-Layer Meteorol 84:497–502CrossRefGoogle Scholar
  4. Dennis JE, Schnabel RB (1983), Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs, 378 pp (Reprinted as Classics in applied mathematics, vol 16, 1996)Google Scholar
  5. Katul GG, Goltz SM, Hsieh CI, Cheng Y, Mowry F, Sigmon J (1995) Estimation of surface heat and momentum fluxes using the fluxvariance method above uniform and non-uniform terrain. Boundary-Layer Meteorol 74:237–260CrossRefGoogle Scholar
  6. Katul GG, Finkelstein PL, Clarke JF, Ellelstad TG (1996) An investigation of the conditional sampling method used to estimate fluxes of active, reactive and passive scalars. J Appl Meteorol 35:1835–1845CrossRefGoogle Scholar
  7. Kim SH, Sicher RC, Bae H, Gitz DC, Baker JT, Timlin DJ, Reddy VR (2006) Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Glob Change Biol 12:588–600CrossRefGoogle Scholar
  8. Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy P, Wohlfahrt G (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob Change Biol 16:187–208CrossRefGoogle Scholar
  9. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge, 925 ppGoogle Scholar
  10. Raccuia SA, Melilli MG (2007) Biomass and grain oil yields in Cynara cardunculus L. genotypes grown in a Mediterranean environment. Field Crop Res 101:187–197CrossRefGoogle Scholar
  11. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grüunwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J-M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439CrossRefGoogle Scholar
  12. Reichstein M, Stoy PC, Desai AR, Lasslop G, Richardson AD (2012) Partitioning of net fluxes. In: Aubinet M et al. (eds) Eddy covariance: a practical guide to measurement and data analysis, Chap 9. Springer Atmospheric Sciences, Berlin, pp 263–289Google Scholar
  13. Scanlon TM, Kustas WP (2010) Partitioning carbon dioxide and water vapor fluxes using correlation analysis. Agric For Meteorol 150:89–99CrossRefGoogle Scholar
  14. Scanlon TM, Sahu P (2008) On the correlation structure of water vapor and carbon dioxide in the atmospheric surface layer: a basis for flux partitioning. Water Resour Res 44:W10418Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Luigi Palatella
    • 1
    • 2
  • Gianfranco Rana
    • 3
  • Domenico Vitale
    • 4
  1. 1.ISAC-CNR, Istituto di Scienze dell’Atmosfera e del ClimaU.O.S. di LecceLecceItaly
  2. 2.INFN sez. LecceLecceItaly
  3. 3.CRA-SCA, Consiglio per la Ricerca e la Sperimentazione in AgricolturaUnità di Ricerca per i Sistemi Colturali degli Ambienti Caldo-AridiBariItaly
  4. 4.DIBAF, Dipartimento per l’Innovazione nei sistemi Biologici, Agroalimentari e ForestaliUniversity of TusciaViterboItaly

Personalised recommendations