Boundary-Layer Meteorology

, Volume 145, Issue 3, pp 539–550 | Cite as

Comprehensive Parametrization of Surface-Layer Transfer Coefficients for Use in Atmospheric Numerical Models

  • Hendrik Wouters
  • Koen De Ridder
  • Nicole P. M. van Lipzig
Research Note


A new non-iterative bulk parametrization for surface-layer transfer coefficients for momentum and heat is presented. It is applicable for a wide range of aerodynamic and thermal roughness lengths, and includes the effect of the roughness sublayer. As a consequence, the non-iterative method is suitable for every surface type, especially for urban surfaces for which existing non-iterative parametrizations fail. The analytical approximation compares very well with an iterative approach. Our method can be easily implemented in atmospheric numerical models that already employ a non-iterative approach.


Monin–Obukhov similarity theory Surface energy balance Surface-layer transfer coefficients Thermal roughness length Turbulent fluxes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreas EL, Murphy B (1986) Bulk transfer coefficients for heat and momentum over leads and polynas. J Phys Oceanogr 16: 1875–1883CrossRefGoogle Scholar
  2. Arya SP (2001) Introduction to micrometeorology, 2nd edn. Academic Press, San Diego, 420 ppGoogle Scholar
  3. Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30: 327–341CrossRefGoogle Scholar
  4. Blümel K (2000) An approximate analytical solution of flux–profile relationships for the atmospheric surface layer with different momentum and heat roughness lengths. Boundary-Layer Meteorol 97: 251–271CrossRefGoogle Scholar
  5. Businger JA (1966) Transfer of momentum and heat in the planetary boundary layer. In: Proceedings of the symposium on the Arctic heat budget and atmospheric circulation, pp 305–331Google Scholar
  6. Byun DW (1990) On the analytical solution of flux–profile relationships for the atmospheric surface layer. J Appl Meteorol 29: 652–657CrossRefGoogle Scholar
  7. Cheng YG, Brutsaert W (2005) Flux–profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Boundary-Layer Meteorol 114: 519–538CrossRefGoogle Scholar
  8. De Bruin HAR, Ronda RJ, Van De Wiel BJH (2000) Approximate solutions for the Obukhov length and the surface fluxes in terms of bulk Richardson numbers. Boundary-Layer Meteorol 95: 145–157CrossRefGoogle Scholar
  9. De Ridder K (2010) Bulk transfer relations for the roughness sublayer. Boundary-Layer Meteorol 134: 257–267CrossRefGoogle Scholar
  10. Demuzere M, De Ridder K, van Lipzig NPM (2008) Modeling the energy balance in Marseille: sensitivity to roughness length parametrizations and thermal admittance. J Geophys Res 113: 1–19CrossRefGoogle Scholar
  11. Dyer AJ (1967) The turbulent transport of heat and water vapour in an unstable atmosphere. Q J R Meteorol Soc 93: 501–508CrossRefGoogle Scholar
  12. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, 316 ppGoogle Scholar
  13. Guo X, Zhang H (2007) A performance comparison between nonlinear similarity functions in bulk parameterization for very stable conditions. Environ Fluid Mech 7: 239–257CrossRefGoogle Scholar
  14. Holtslag AAM, Ek M (1996) Simulation of surface fluxes and boundary-layer development over the pine forest in HAPEX-MOBILHY. J Appl Meteorol 35: 202–213CrossRefGoogle Scholar
  15. Launiainen J (1995) Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux–profile studies. Boundary-Layer Meteorol 76: 165–179CrossRefGoogle Scholar
  16. Lee HN (1997) Improvement of surface flux calculations in the atmospheric surface layer. J Appl Meteorol 36: 1416–1423CrossRefGoogle Scholar
  17. Li Y, Gao Z, Lenschow DH, Chen ZF (2010) An improved approach for parameterizing surface-layer turbulent transfer coefficients in numerical models. Boundary-Layer Meteorol 137: 153–165CrossRefGoogle Scholar
  18. Louis J-F (1979) A parametric model of the vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol 17: 187–202CrossRefGoogle Scholar
  19. Mascart P, Noilhan J, Giordani H (1995) A modified parameterization of flux–profile relationships in the surface layer using different roughness length values for heat and momentum. Boundary-Layer Meteorol 72: 331–344CrossRefGoogle Scholar
  20. Monin AS, Obukhov AM (1954) Dimensionless characteristics of turbulence in the surface layer of the atmosphere. Trudy Geofiz Inst Akad Nauk SSSR 24: 163–187Google Scholar
  21. Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9: 857–861CrossRefGoogle Scholar
  22. Physick WL, Garratt JR (1995) Incorporation of a high-roughness lower boundary into a mesoscale model for studies of dry deposition over complex terrain. Boundary-Layer Meteorol 74: 55–71CrossRefGoogle Scholar
  23. Pleim JE (2006) A simple, efficient solution of flux–profile relationships in the atmospheric surface layer. J Appl Meteorol Climatol 45: 341–347CrossRefGoogle Scholar
  24. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge, 934 ppGoogle Scholar
  25. Ridders CJF (1979) A new algorithm for computing a single root of a real continuous function. IEEE Trans Circuits Syst 26: 979–980CrossRefGoogle Scholar
  26. Sarkar A, De Ridder K (2010) The urban heat island intensity of Paris: a case study based on a simple urban surface parametrization. Boundary-Layer Meteorol 138: 511–520CrossRefGoogle Scholar
  27. Song Y (1998) An improvement of the Louis scheme for the surface layer in an atmospheric modelling system. Boundary-Layer Meteorol 88: 239–254CrossRefGoogle Scholar
  28. Sugawara H, Narita K (2008) Roughness length for heat over an urban canopy. Theor Appl Climatol 95: 291–299CrossRefGoogle Scholar
  29. Uno I, Cai XM, Steyn DG, Emori S (1995) A simple extension of the Louis method for rough surface layer modeling. Boundary-Layer Meteorol 76: 395–409CrossRefGoogle Scholar
  30. van den Hurk B, Holtslag A (1997) On the bulk parameterization of surface fluxes for various conditions and parameter ranges. Boundary-Layer Meteorol 82: 119–133CrossRefGoogle Scholar
  31. Van Weverberg K, De Ridder K, Van Rompaey A (2008) Modeling the contribution of the Brussels heat island to a long temperature time series. J Appl Meteorol Climatol 47: 976–990CrossRefGoogle Scholar
  32. Viterbo P, Beljaars ACM, Mahouf J-F, Teixeira J (1999) The representation of soil moisture freezing and its impact on the stable boundary layer. Q J R Meteorol Soc 125: 2401–2426CrossRefGoogle Scholar
  33. Voogt JA, Grimmond CSB (2000) Modelling surface sensible heat flux using surface radiative temperatures in a simple urban area. J Appl Meteorol 39: 1679–1699CrossRefGoogle Scholar
  34. Yang K, Tamai N, Koike T (2001) Analytical solution of surface layer similarity equations. J Appl Meteorol 40: 1647–1653CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hendrik Wouters
    • 1
    • 2
  • Koen De Ridder
    • 1
  • Nicole P. M. van Lipzig
    • 2
  1. 1.VITO—Flemish Institute for Technological ResearchMolBelgium
  2. 2.Department of Earth and Environmental SciencesKU LeuvenLeuvenBelgium

Personalised recommendations