Skip to main content

Advertisement

Log in

A Method for Increasing the Turbulent Kinetic Energy in the Mellor–Yamada–Janjić Boundary-Layer Parametrization

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A method for enhancing the calculation of turbulent kinetic energy in the Mellor–Yamada–Janjić planetary boundary-layer parametrization in the Weather Research and Forecasting numerical model is presented. This requires some unconventional selections for the closure constants and an additional stability dependent surface length scale. Single column model and three-dimensional model simulations are presented showing a similar performance with the existing boundary-layer parametrization, but with a more realistic magnitude of turbulence intensity closer to the surface with respect to observations. The intended application is an enhanced calculation of turbulence intensity for the purposes of a more accurate wind-energy forecast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Businger J, Wyngaard J, Iyumi Z, Bradley E (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189

    Article  Google Scholar 

  • Buzzi M, Rotach MW, Holtslag M, Holtslag AAM (2011) Evaluation of the COSMO-SC turbulence scheme in a shear-driven stable boundary layer. Meteorol Z 20: 335–350

    Article  Google Scholar 

  • Carlier J, Stanislas M (2005) Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J Fluid Mech 535: 143–188

    Article  Google Scholar 

  • Carson DJ, Richards PJR (1978) Modelling surface turbulent fluxes in stable conditions. Boundary-Layer Meteorol 14: 67–81

    Article  Google Scholar 

  • Charnock H (1955) Wind stress on a water surface. Q J R Meteorol Soc 81: 639–640

    Article  Google Scholar 

  • Csanady G (1974) Equilibrium theory of the planetary boundary layer with an inversion lid. Boundary-Layer Meteorol 6: 63–79

    Article  Google Scholar 

  • DeGraaff D, Eaton J (2000) Reynolds-number scaling of the flat-plate turbulent boundary layer. J Fluid Mech 422: 319–346

    Article  Google Scholar 

  • Elliott DL (1991) Status of wake and array loss research. In: 21st American wind energy association conference: windpower 1991, Palm Springs, 24–27 Sep 1991

  • EWEA (2012) The european offshore wind industry key 2011 trends and statistics. http://www.ewea.org/fileadmin/ewea_documents/documents/publications/statistics/EWEA_stats_offshore_2011_02.pdf

  • Fernholz H, Finley P (1996) The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog Aerospace Sci 32: 245–311

    Article  Google Scholar 

  • Galperin B, Sukoriansky S, Anderson PS (2007) On the critical Richardson number in stably stratified turbulence. Atmos Sci Let 8: 65–69

    Article  Google Scholar 

  • Garratt JR (1987) The stably stratified internal boundary layer for steady and diurnally varying offshore flow. Boundary-Layer Meteorol 38: 369–394

    Article  Google Scholar 

  • Holt T, Raman S (1988) A review and comparative evaluation of multi-level boundary layer parameterizations for first order and turbulent kinetic energy closure schemes. Rev Geophys 26: 761–780

    Article  Google Scholar 

  • Hutchins N, Nickels T, Marusic I, Chong M (2009) Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech 635: 103–136

    Article  Google Scholar 

  • Janjić ZI (1990) The step-mountain coordinate: physical package. Mon Weather Rev 118: 1429–1443

    Article  Google Scholar 

  • Janjić Z (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122: 927–945

    Article  Google Scholar 

  • Janjić Z (2002) Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. Technical Report, National Centers for Environmental Prediction, Office Note No. 437

  • Klebanoff P (1955) Characteristics of turbulence in a boundary layer with zero pressure gradient. Technical Report 1247, National Advisory Committee for Aeronautics, Washington

  • Kunkel G, Marusic I (2006) Study of the near-wall-turbulent region of the high-reynolds-number boundary layer using an atmospheric flow. J Fluid Mech 548: 375–402

    Article  Google Scholar 

  • Laufer J (1954) The structure of turbulence in a fully developed pipe flow. Technical Report 1174, National Advisory Committee for Aeronautics, Washington

  • Luhar AK, Hurley PJ, Rayner KN (2009) Modelling near-surface low winds over land under stable conditions: sensitivity tests, flux–gradient relationships, and stability parameters. Boundary-Layer Meteorol 130: 249–274

    Article  Google Scholar 

  • Mahrt L (1998) Stratified atmospheric boundary layers and breakdown of models. J Theor Comp Fluid Dyn 11: 263–279

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90: 375–396

    Article  Google Scholar 

  • Mahrt L, Vickers D (2002) Contrasting vertical structures of nocturnal boundary layers. Boundary-Layer Meteorol 105: 351–363

    Article  Google Scholar 

  • Mellor G (1973) Analytic prediction of the properties of stratified planetary surface layers. J Atmos Sci 30: 1061–1069

    Article  Google Scholar 

  • Mellor G, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31: 1791–1806

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20: 851–875

    Article  Google Scholar 

  • Mulhearn P (1981) On the formation of a stably stratified internal boundary-layer by advection of warm air over a cooler sea. Boundary-Layer Meteorol 21: 247–254

    Article  Google Scholar 

  • Nakanishi M (2001) Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Boundary-Layer Meteorol 99: 349–378

    Article  Google Scholar 

  • Neumann T, Nolopp K (2007) Three years operation of far offshore measurements at FINO1. DEWI Mag 30: 42–46

    Google Scholar 

  • Österlund J (1999) Experimental studies of zero pressure-gradient turbulent boundary layer flow. PhD thesis, Royal Institute of Technology, Department of Mechanics, Stockholm

  • Perry A, Abell C (1975) Scaling laws for pipe-flow turbulence. J Fluid Mech 67: 257–271

    Article  Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83: 555–581

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X, Wang W, Powers J (2008) A description of the advanced research WRF version 3. Technical Report, National Center for Atmospheric Research, Boulder

  • Stull R (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 666 pp

  • Svensson G, Holtslag A, Kumar V, Mauritsen T, Steeneveld G, Angevine W, Bazile E, Beljaars A, de Bruijn E, Cheng A, Conangla L, Cuxart J, Ek M, Falk M, Freedman F, Kitagawa H, Larson V, Lock A, Mailhot J, Masson V, Park S, Pleim J, Söderberg S, Weng W, Zampieri M (2011) Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: The second GABLS experiment. Boundary-Layer Meteorol 140: 177–206

    Article  Google Scholar 

  • Türk M, Emeis S (2010) The dependence of offshore turbulence intensity on wind speed. J Wind Eng Ind Aerodyn 98: 466–471

    Article  Google Scholar 

  • Yamada T, Mellor G (1975) A simulation of the Wangara atmospheric boundary layer data. J Atmos Sci 32: 2309–2329

    Article  Google Scholar 

  • Zilitinkevich S, Baklanov A (2002) Calculation of the height of the stable boundary layer in practical applications. Boundary-Layer Meteorol 105: 389–409

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Foreman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foreman, R.J., Emeis, S. A Method for Increasing the Turbulent Kinetic Energy in the Mellor–Yamada–Janjić Boundary-Layer Parametrization. Boundary-Layer Meteorol 145, 329–349 (2012). https://doi.org/10.1007/s10546-012-9727-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9727-4

Keywords

Navigation