Skip to main content
Log in

Estimating the Random Error in Eddy-Covariance Based Fluxes and Other Turbulence Statistics: The Filtering Method

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A spatially local decomposition of turbulent fluxes based on properties of spatial filters is used to develop a new method of estimating random error in turbulent moments of any order. The proposed error estimation method does not require an estimate of the integral time scale, which can be highly sensitive to the method used to calculate it. The error estimation method is validated using synthetic flux data with a known ensemble mean and intercompared with existing methods using data from the Advection Horizontal Array Turbulence Study (AHATS). Typical errors for a 27.3-min block of data collected at a height of 8 m are found to be approximately 10% for the heat flux and 7–15% for variances. The error in the momentum flux increases rapidly with increasing atmospheric instability, reaching values of 40% or greater for unstable conditions. A new method based on filtering is also proposed to estimate integral time scales of turbulent quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski A, Martin P, Berbigier P, Bernhofer C et al (1999) Estimates of the annual net carbon and water exchange of forests: the euroflux methodology. Adv Ecol Res 30: 113–175

    Article  Google Scholar 

  • Baldocchi D (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9(4): 479–492

    Article  Google Scholar 

  • Baldocchi D (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56(1): 1–26

    Article  Google Scholar 

  • Baldocchi D, Gu L, Goldstein A, Falge E, Olson R, Hollinger D, Evans R, Running S, Anthoni P, Law B et al (2001) Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11): 2415–2434

    Article  Google Scholar 

  • Bendat J, Piersol A (2000) Random data: analysis and measurement procedures, 3rd edn. Wiley, New York, p 594

    Google Scholar 

  • Berger B, Davis K, Yi C, Bakwin P, Zhao C (2001) Long-term carbon dioxide fluxes from a very tall tower in a northern forest: flux measurement methodology. J Atmos Ocean Technol 18: 529–542

    Article  Google Scholar 

  • Bernardes M, Dias N (2010) The alignment of the mean wind and stress vectors in the unstable surface layer. Boundary-Layer Meteorol 134(1): 41–59

    Article  Google Scholar 

  • Businger J (1985) Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. J Clim Appl Meteorol 25: 1100–1124

    Google Scholar 

  • Dias N, Chamecki M, Kan A, Okawa C (2004) A study of spectra, structure and correlation functions and their implications for the stationarity of surface-layer turbulence. Boundary-Layer Meteorol 110(2): 165–189

    Article  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall/CRC, New York, p 456

    Google Scholar 

  • Finkelstein P, Sims P (2001) Sampling error in eddy correlation flux measurements. J Geophys Res 106(D4): 3503–3509

    Article  Google Scholar 

  • Garcia C, Jackson P, Garcia M (2006) Confidence intervals in the determination of turbulence parameters. Exp Fluids 40(4): 514–522

    Article  Google Scholar 

  • Gluhovsky A, Agee E (1994) A definitive approach to turbulence statistical studies in planetary boundary layers. J Atmos Sci 51(12): 1682–1690

    Article  Google Scholar 

  • Hagelberg C, Gamage N (1994) Structure-preserving wavelet decompositions of intermittent turbulence. Boundary-Layer Meteorol 70(3): 217–246

    Article  Google Scholar 

  • Hollinger D, Richardson A (2005) Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiol 25(7): 873

    Article  Google Scholar 

  • Howell J, Mahrt L (1997) Multiresolution flux decomposition. Boundary-Layer Meteorol 83(1): 117–137

    Article  Google Scholar 

  • Johansson C, Smedman A, Högström U, Brasseur J, Khanna S (2001) Critical test of the validity of Monin–Obukhov similarity during convective conditions. J Atmos Sci 58(12): 1549–1566

    Article  Google Scholar 

  • Kaimal J, Finnigan J (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, p 289

    Google Scholar 

  • Kaimal J, Izumi Y, Wyngaard J, Coté R (1972) Spectral characteristics of surface-layer turbulence. Q J Roy Meteorol Soc 98(417): 563–589

    Article  Google Scholar 

  • Katul G, Parlange M (1995) Analysis of land surface heat fluxes using the orthonormal wavelet approach. Water Resour Res 31(11): 2743–2749

    Article  Google Scholar 

  • Katul G, Vidakovic B (1996) The partitioning of attached and detached eddy motion in the atmospheric surface layer using Lorentz wavelet filtering. Boundary-Layer Meteorol 77(2): 153–172

    Article  Google Scholar 

  • Khanna S, Brasseur J (1997) Analysis of Monin–Obukhov similarity from large-eddy simulation. J Fluid Mech 345: 251–286

    Article  Google Scholar 

  • Lee X, Massman W, Law B (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Springer, Dordrecht, p 264

    Google Scholar 

  • Lenschow D, Stankov B (1986) Length scales in the convective boundary layer. J Atmos Sci 43(12): 1198–1209

    Article  Google Scholar 

  • Lenschow D, Pearson R Jr, Stankov B (1981) Estimating the ozone budget in the boundary layer by use of aircraft measurements of ozone eddy flux and mean concentration. J Geophys Res 86(C8): 7291–7297

    Article  Google Scholar 

  • Lenschow D, Pearson R Jr, Stankov B (1982) Measurements of ozone vertical flux to ocean and forest. J Geophys Res 87(C11): 8833–8837

    Article  Google Scholar 

  • Lenschow D, Mann J, Kristensen L (1993) How long is long enough when measuring fluxes and other turbulent statistics? Tech Rep, NCAR, P.O. Box 3000, Boulder, CO 80307, 53 pp

  • Lenschow D, Mann J, Kristensen L (1994) How long is long enough when measuring fluxes and other turbulence statistics?. J Atmos Ocean Technol 11(3): 661–673

    Article  Google Scholar 

  • Leonard A (1974) Energy cascade in large-eddy simulations of turbulent fluid flows. Adv Geophys 18: 237–248

    Article  Google Scholar 

  • Liepmann H (1952) Aspects of the turbulence problem. Z Angew Math Phys 3(5): 321–342

    Article  Google Scholar 

  • Lumley J, Panofsky H (1964) The structure of atmospheric turbulence. Interscience, New York, p 239

    Google Scholar 

  • Luyssaert S, Inglima I, Jung M, Richardson A, Reichstein M, Papale D, Piao S, Schulze E, Wingate L, Matteucci G et al (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13(12): 2509–2537

    Article  Google Scholar 

  • Mahrt L (1998) Flux sampling errors for aircraft and towers. J Atmos Ocean Technol 15(2): 416–429

    Article  Google Scholar 

  • Mann J, Lenschow D (1994) Errors in airborne flux measurements. J Geophys Res 99(D7): 14519–14526

    Article  Google Scholar 

  • Meneveau C (1991) Analysis of turbulence in the orthonormal wavelet representation. J Fluid Mech 232: 469–520

    Article  Google Scholar 

  • Moncrieff J, Malhi Y, Leuning R (1996) Errors in long-term flux measurements. Glob Change Biol 2: 231–240

    Article  Google Scholar 

  • Moncrieff J, Massheder J, De Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188: 589–611

    Article  Google Scholar 

  • Politis D, White H (2004) Automatic block-length selection for the dependent bootstrap. Economet Rev 23(1): 53–70

    Article  Google Scholar 

  • Richardson A, Hollinger D, Burba G, Davis K, Flanagan L, Katul G, William Munger J, Ricciuto D, Stoy P, Suyker A et al (2006) A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agric For Meteorol 136(1–2): 1–18

    Article  Google Scholar 

  • Sagaut P (2006) Large eddy simulation for incompressible flows: an introduction, 2nd edn. Springer, Berlin, p 426

    Google Scholar 

  • Sreenivasan K, Chambers A, Antonia R (1978) Accuracy of moments of velocity and scalar fluctuations in the atmospheric surface layer. Boundary-Layer Meteorol 14(3): 341–359

    Article  Google Scholar 

  • Stull R (1988) An introduction to boundary layer meteorology. Springer, New York, p 683

    Google Scholar 

  • Sullivan P, Horst T, Lenschow D, Moeng C, Weil J (2003) Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J Fluid Mech 482: 101–139

    Article  Google Scholar 

  • Theunissen R, Di Sante A, Riethmuller M, Van den Braembussche R (2008) Confidence estimation using dependent circular block bootstrapping: application to the statistical analysis of PIV measurements. Exp Fluids 44(4): 591–596

    Article  Google Scholar 

  • Tritton D (1988) Physical fluid dynamics, 2nd edn. Oxford University Press, New York, p 536

    Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14(3): 512–526

    Article  Google Scholar 

  • Wesely M, Cook D, Williams R (1981) Field measurement of small ozone fluxes to snow, wet bare soil, and lake water. Boundary-Layer Meteorol 20(4): 459–471

    Article  Google Scholar 

  • Wyngaard J (1973) On surface layer turbulence. In: Haugen D (ed) Workshop on micrometeorology. American Meteorological Society, Boston, pp 101–149

    Google Scholar 

  • Yaglom A (1987) Correlation theory of stationary and related random functions, vol 1. Springer, New York, p 526

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Chamecki.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (TXT 6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salesky, S.T., Chamecki, M. & Dias, N.L. Estimating the Random Error in Eddy-Covariance Based Fluxes and Other Turbulence Statistics: The Filtering Method. Boundary-Layer Meteorol 144, 113–135 (2012). https://doi.org/10.1007/s10546-012-9710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9710-0

Keywords

Navigation