Boundary-Layer Meteorology

, Volume 144, Issue 1, pp 113–135 | Cite as

Estimating the Random Error in Eddy-Covariance Based Fluxes and Other Turbulence Statistics: The Filtering Method

  • Scott T. Salesky
  • Marcelo Chamecki
  • Nelson L. Dias


A spatially local decomposition of turbulent fluxes based on properties of spatial filters is used to develop a new method of estimating random error in turbulent moments of any order. The proposed error estimation method does not require an estimate of the integral time scale, which can be highly sensitive to the method used to calculate it. The error estimation method is validated using synthetic flux data with a known ensemble mean and intercompared with existing methods using data from the Advection Horizontal Array Turbulence Study (AHATS). Typical errors for a 27.3-min block of data collected at a height of 8 m are found to be approximately 10% for the heat flux and 7–15% for variances. The error in the momentum flux increases rapidly with increasing atmospheric instability, reaching values of 40% or greater for unstable conditions. A new method based on filtering is also proposed to estimate integral time scales of turbulent quantities.


Atmospheric turbulence Eddy covariance Filtering Integral scale Random error Turbulent fluxes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10546_2012_9710_MOESM1_ESM.txt (5 kb)
ESM 1 (TXT 6 kb)


  1. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski A, Martin P, Berbigier P, Bernhofer C et al (1999) Estimates of the annual net carbon and water exchange of forests: the euroflux methodology. Adv Ecol Res 30: 113–175CrossRefGoogle Scholar
  2. Baldocchi D (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9(4): 479–492CrossRefGoogle Scholar
  3. Baldocchi D (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56(1): 1–26CrossRefGoogle Scholar
  4. Baldocchi D, Gu L, Goldstein A, Falge E, Olson R, Hollinger D, Evans R, Running S, Anthoni P, Law B et al (2001) Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11): 2415–2434CrossRefGoogle Scholar
  5. Bendat J, Piersol A (2000) Random data: analysis and measurement procedures, 3rd edn. Wiley, New York, p 594Google Scholar
  6. Berger B, Davis K, Yi C, Bakwin P, Zhao C (2001) Long-term carbon dioxide fluxes from a very tall tower in a northern forest: flux measurement methodology. J Atmos Ocean Technol 18: 529–542CrossRefGoogle Scholar
  7. Bernardes M, Dias N (2010) The alignment of the mean wind and stress vectors in the unstable surface layer. Boundary-Layer Meteorol 134(1): 41–59CrossRefGoogle Scholar
  8. Businger J (1985) Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. J Clim Appl Meteorol 25: 1100–1124Google Scholar
  9. Dias N, Chamecki M, Kan A, Okawa C (2004) A study of spectra, structure and correlation functions and their implications for the stationarity of surface-layer turbulence. Boundary-Layer Meteorol 110(2): 165–189CrossRefGoogle Scholar
  10. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall/CRC, New York, p 456Google Scholar
  11. Finkelstein P, Sims P (2001) Sampling error in eddy correlation flux measurements. J Geophys Res 106(D4): 3503–3509CrossRefGoogle Scholar
  12. Garcia C, Jackson P, Garcia M (2006) Confidence intervals in the determination of turbulence parameters. Exp Fluids 40(4): 514–522CrossRefGoogle Scholar
  13. Gluhovsky A, Agee E (1994) A definitive approach to turbulence statistical studies in planetary boundary layers. J Atmos Sci 51(12): 1682–1690CrossRefGoogle Scholar
  14. Hagelberg C, Gamage N (1994) Structure-preserving wavelet decompositions of intermittent turbulence. Boundary-Layer Meteorol 70(3): 217–246CrossRefGoogle Scholar
  15. Hollinger D, Richardson A (2005) Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiol 25(7): 873CrossRefGoogle Scholar
  16. Howell J, Mahrt L (1997) Multiresolution flux decomposition. Boundary-Layer Meteorol 83(1): 117–137CrossRefGoogle Scholar
  17. Johansson C, Smedman A, Högström U, Brasseur J, Khanna S (2001) Critical test of the validity of Monin–Obukhov similarity during convective conditions. J Atmos Sci 58(12): 1549–1566CrossRefGoogle Scholar
  18. Kaimal J, Finnigan J (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, p 289Google Scholar
  19. Kaimal J, Izumi Y, Wyngaard J, Coté R (1972) Spectral characteristics of surface-layer turbulence. Q J Roy Meteorol Soc 98(417): 563–589CrossRefGoogle Scholar
  20. Katul G, Parlange M (1995) Analysis of land surface heat fluxes using the orthonormal wavelet approach. Water Resour Res 31(11): 2743–2749CrossRefGoogle Scholar
  21. Katul G, Vidakovic B (1996) The partitioning of attached and detached eddy motion in the atmospheric surface layer using Lorentz wavelet filtering. Boundary-Layer Meteorol 77(2): 153–172CrossRefGoogle Scholar
  22. Khanna S, Brasseur J (1997) Analysis of Monin–Obukhov similarity from large-eddy simulation. J Fluid Mech 345: 251–286CrossRefGoogle Scholar
  23. Lee X, Massman W, Law B (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Springer, Dordrecht, p 264Google Scholar
  24. Lenschow D, Stankov B (1986) Length scales in the convective boundary layer. J Atmos Sci 43(12): 1198–1209CrossRefGoogle Scholar
  25. Lenschow D, Pearson R Jr, Stankov B (1981) Estimating the ozone budget in the boundary layer by use of aircraft measurements of ozone eddy flux and mean concentration. J Geophys Res 86(C8): 7291–7297CrossRefGoogle Scholar
  26. Lenschow D, Pearson R Jr, Stankov B (1982) Measurements of ozone vertical flux to ocean and forest. J Geophys Res 87(C11): 8833–8837CrossRefGoogle Scholar
  27. Lenschow D, Mann J, Kristensen L (1993) How long is long enough when measuring fluxes and other turbulent statistics? Tech Rep, NCAR, P.O. Box 3000, Boulder, CO 80307, 53 ppGoogle Scholar
  28. Lenschow D, Mann J, Kristensen L (1994) How long is long enough when measuring fluxes and other turbulence statistics?. J Atmos Ocean Technol 11(3): 661–673CrossRefGoogle Scholar
  29. Leonard A (1974) Energy cascade in large-eddy simulations of turbulent fluid flows. Adv Geophys 18: 237–248CrossRefGoogle Scholar
  30. Liepmann H (1952) Aspects of the turbulence problem. Z Angew Math Phys 3(5): 321–342CrossRefGoogle Scholar
  31. Lumley J, Panofsky H (1964) The structure of atmospheric turbulence. Interscience, New York, p 239Google Scholar
  32. Luyssaert S, Inglima I, Jung M, Richardson A, Reichstein M, Papale D, Piao S, Schulze E, Wingate L, Matteucci G et al (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13(12): 2509–2537CrossRefGoogle Scholar
  33. Mahrt L (1998) Flux sampling errors for aircraft and towers. J Atmos Ocean Technol 15(2): 416–429CrossRefGoogle Scholar
  34. Mann J, Lenschow D (1994) Errors in airborne flux measurements. J Geophys Res 99(D7): 14519–14526CrossRefGoogle Scholar
  35. Meneveau C (1991) Analysis of turbulence in the orthonormal wavelet representation. J Fluid Mech 232: 469–520CrossRefGoogle Scholar
  36. Moncrieff J, Malhi Y, Leuning R (1996) Errors in long-term flux measurements. Glob Change Biol 2: 231–240CrossRefGoogle Scholar
  37. Moncrieff J, Massheder J, De Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188: 589–611CrossRefGoogle Scholar
  38. Politis D, White H (2004) Automatic block-length selection for the dependent bootstrap. Economet Rev 23(1): 53–70CrossRefGoogle Scholar
  39. Richardson A, Hollinger D, Burba G, Davis K, Flanagan L, Katul G, William Munger J, Ricciuto D, Stoy P, Suyker A et al (2006) A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agric For Meteorol 136(1–2): 1–18CrossRefGoogle Scholar
  40. Sagaut P (2006) Large eddy simulation for incompressible flows: an introduction, 2nd edn. Springer, Berlin, p 426Google Scholar
  41. Sreenivasan K, Chambers A, Antonia R (1978) Accuracy of moments of velocity and scalar fluctuations in the atmospheric surface layer. Boundary-Layer Meteorol 14(3): 341–359CrossRefGoogle Scholar
  42. Stull R (1988) An introduction to boundary layer meteorology. Springer, New York, p 683Google Scholar
  43. Sullivan P, Horst T, Lenschow D, Moeng C, Weil J (2003) Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J Fluid Mech 482: 101–139CrossRefGoogle Scholar
  44. Theunissen R, Di Sante A, Riethmuller M, Van den Braembussche R (2008) Confidence estimation using dependent circular block bootstrapping: application to the statistical analysis of PIV measurements. Exp Fluids 44(4): 591–596CrossRefGoogle Scholar
  45. Tritton D (1988) Physical fluid dynamics, 2nd edn. Oxford University Press, New York, p 536Google Scholar
  46. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14(3): 512–526CrossRefGoogle Scholar
  47. Wesely M, Cook D, Williams R (1981) Field measurement of small ozone fluxes to snow, wet bare soil, and lake water. Boundary-Layer Meteorol 20(4): 459–471CrossRefGoogle Scholar
  48. Wyngaard J (1973) On surface layer turbulence. In: Haugen D (ed) Workshop on micrometeorology. American Meteorological Society, Boston, pp 101–149Google Scholar
  49. Yaglom A (1987) Correlation theory of stationary and related random functions, vol 1. Springer, New York, p 526Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Scott T. Salesky
    • 1
  • Marcelo Chamecki
    • 1
  • Nelson L. Dias
    • 2
  1. 1.Department of MeteorologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Laboratory for Environmental Monitoring and Modeling AnalysisFederal University of ParanáCuritibaBrazil

Personalised recommendations