Advertisement

Boundary-Layer Meteorology

, Volume 143, Issue 2, pp 379–391 | Cite as

The Effect of Scale on the Applicability of Taylor’s Frozen Turbulence Hypothesis in the Atmospheric Boundary Layer

  • Chad W. Higgins
  • Martin Froidevaux
  • Valentin Simeonov
  • Nikki Vercauteren
  • Caitlin Barry
  • Marc B. Parlange
Open Access
Article

Abstract

Taylor’s frozen turbulence hypothesis is the central assumption invoked in most experiments designed to investigate turbulence physics with time resolving sensors. It is also frequently used in theoretical discussions when linking Lagrangian to Eulerian flow formalisms. In this work we seek to quantify the effectiveness of Taylor’s hypothesis on the field scale using water vapour as a passive tracer. A horizontally orientated Raman lidar is used to capture the humidity field in space and time above an agricultural region in Switzerland. High resolution wind speed and direction measurements are conducted simultaneously allowing for a direct test of Taylor’s hypothesis at the field scale. Through a wavelet decomposition of the lidar humidity measurements we show that the scale of turbulent motions has a strong influence on the applicability of Taylor’s hypothesis. This dependency on scale is explained through the use of dimensional analysis. We identify a ‘persistency scale’ that can be used to quantify the effectiveness of Taylor’s hypothesis, and present the accuracy of the hypothesis as a function of this non-dimensional length scale. These results are further investigated and verified through the use of large-eddy simulations.

Keywords

Atmospheric boundary layer Humidity Raman lidar Taylor’s frozen turbulence hypothesis 

Notes

Acknowledegments

The authors would like to thank the Swiss National Science Foundation (project no. 200021-107910/1, 200021_120238/1, 2008–2011) and the Mobile Information Communication System (MICS) for their support of this research.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  1. Albertson JD, Parlange MB (1999) Natural integration of scalar fluxes from complex terrain. Adv Water Res 23(3): 239–252CrossRefGoogle Scholar
  2. Bahraminasab A, Niry MD, Davoudi J, Tabar MRR, Masoudi AA, Sreenivassan KR (2008) Taylor’s frozen-flow hypothesis in Bergers turbulence. Phys Rev E 77(6):Art No. 065302Google Scholar
  3. Beare RJ, MacVean MK, Holtslag AAM, Cuxart J, Esau I, Golaz JC, Jimenez MA, Khairoutdinov M, Kosovic B, Lewellen D, Lund TS, Lundquist JK, McCabe A, Moene AF, Noh Y, Raasch S, Sullivan P (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118(2): 247–272CrossRefGoogle Scholar
  4. Bou-Zeid E, Meneveau C, Parlange MB (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17: 025105-1CrossRefGoogle Scholar
  5. Bou-Zeid E, Higgins CW, Huwald H, Meneveau C, Parlange MB (2010) Field study of the dynamics and modeling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier. J Fluid Mech 665: 80–515CrossRefGoogle Scholar
  6. Dahm WJA, Southerland KB (1997) Experimental assessment of Taylor’s hypothesis and its applicability to dissipation estimates in turbulent flows. Phys Fluids 9(7): 2101–2107CrossRefGoogle Scholar
  7. Deardorff JW (1974) Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteorol 7(1): 81–106CrossRefGoogle Scholar
  8. Del Alamo JC, Jimenez J (2009) Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J Fluid Mech 640: 5–26CrossRefGoogle Scholar
  9. Dosio A, De Arellano JVG, Holtslag AAM, Builtjes PJH (2005) Relating Eularian and Lagrangian statistics for the turbulent dispersion in the atmospheric convective boundary layer. J Atmos Sci 62(4): 1175–1191CrossRefGoogle Scholar
  10. Froidevaux M, Higgins CW, Simeonov V, Ristori P, Pardyjak E, Serikov I, Parlange MB (2012) A new Raman lidar to measure water vapor in the atmospheric boundary layer. Adv Water Res (under review)Google Scholar
  11. Higgins CW, Parlange MB, Meneveau C (2003) Alignment trends of velocity gradients and subgrid-scale fluxes in the turbulent atmospheric boundary layer. Boundary-Layer Meteorol 109(1): 59–83CrossRefGoogle Scholar
  12. Higgins CW, Parlange MB, Meneveau C (2004) The heat flux and the temperature gradient in the lower atmosphere. Geophys Res Lett 31(22):Art. No. L22105Google Scholar
  13. Higgins CW, Meneveau C, Parlange MB (2009) Geometric alignments of the subgrid-scale force in the atmospheric boundary layer. Boundary-Layer Meteorol 132: 1–9CrossRefGoogle Scholar
  14. Hill RJ (1996) Corrections to Taylor’s frozen turbulence approximation. Atmos Res 40: 153–175CrossRefGoogle Scholar
  15. Horst TW, Kleissl J, Lenschow DH, Meneveau C, Moeng C-H, Parlange MB, Sullivan PP, Weil JC (2004) HATS, field observations to obtain spatially-filtered turbulence fields from transverse arrays of sonic anemometers in the atmospheric surface layer. J Atmos Sci 61(13): 1566–1581CrossRefGoogle Scholar
  16. Katul GG, Parlange MB (1995) The spatial structure of turbulence at production wave-numbers using orthonormal wavelet. Boundary-Layer Meteorol 75(1–2): 81–108CrossRefGoogle Scholar
  17. Kelly M, Wyngaard JC, Sullivan PP (2009) Application of a subfilter scale flux model over the ocean using OHATS field data. J Atmos Sci 66: 3217–3225CrossRefGoogle Scholar
  18. Kleissl J, Meneveau C, Parlange MB (2003) On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric boundary layer. J Atmos Sci 60(19): 2372–2388CrossRefGoogle Scholar
  19. Kleissl J, Parlange MB, Meneveau C (2004) Field experimental study of dynamic Smagorinsky models in the atmospheric surface layer. J Atmos Sci 61(18): 2296–2307CrossRefGoogle Scholar
  20. Lumley JL (1965) Interpretation of time spectra measured in high-intensity shear flows. Phys Fluids 8: 1056–1062CrossRefGoogle Scholar
  21. Mason PJ (1994) Large eddy simulation—a critical review of the technique. Q J Roy Meteorol Soc 120(515): 1–26CrossRefGoogle Scholar
  22. Moeng C-H (1984) A large-eddy simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41: 2052–2062CrossRefGoogle Scholar
  23. Moin P (2009) Revisiting Taylor’s hypothesis. J Fluid Mech 640: 1–4CrossRefGoogle Scholar
  24. Patton N, Horst ET, Sullivan P, Lenschow D, Oncley S, Brown W, Burns S, Guenther A, Held A, Karl T, Mayor S, Rizzo L, Spuler S, Sun J, Turnipseed A, Allwine E, Edburg S, Lamb B, Avissar R, Calhoun R, Kleissl J, Massman W, Paw-U K, Weil J (2011) The canopy horizontal array turbulence study (CHATS). Bull Am Meteoreol Soc 92:593–611Google Scholar
  25. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge, UK 806 ppGoogle Scholar
  26. Porté-Agel F, Meneveau C, Parlange MB (1998) Some basic properties of the surrogate subgrid-scale heat flux in the atmospheric boundary layer. Boundary-Layer Meterol 88(3): 425–444CrossRefGoogle Scholar
  27. Porté-Agel F, Meneveau C, Parlange MB (2000a) A scale dependent dynamic model for large eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415: 261–284CrossRefGoogle Scholar
  28. Porté-Agel F, Parlange MB, Meneveau C, Eichinger WE, Pahlow M (2000b) Subgrid-scale dissipation in the atmospheric surface layer: effects of stability and filter dimension. J Hydrometerol 1: 75–87CrossRefGoogle Scholar
  29. Porté-Agel F, Parlange MB, Meneveau C, Eichinger WE (2001a) A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J Atmos Sci 58(18): 2673–2697CrossRefGoogle Scholar
  30. Porté-Agel F, Pahlow M, Meneveau C, Parlange MB (2001b) Atmospheric stability effect on subgrid scale physics for large-eddy simulation. Adv Water Resour 24(9–10): 1085–1102CrossRefGoogle Scholar
  31. Taylor GI (1938) The spectrum of turbulence. Proc Roy Soc Lond 164: 476–490CrossRefGoogle Scholar
  32. Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge, USA, 300 ppGoogle Scholar
  33. Thomas CK (2011) Variability of sub-canopy flow, temperature,and horizontal advection in moderately complex terrain. Boundary-Layer Meteorol 139: 61–81CrossRefGoogle Scholar
  34. Tong CN (1996) Taylor’s hypothesis and two point coherence measurements. Boundary-Layer Meteorol 81(3–4): 399–410CrossRefGoogle Scholar
  35. Tong CN, Wyngaard JC, Brasseur JG (1999) Experimental study of the subgrid-scale stress in the atmospheric surface layer. J Atmos Sci 56(14): 2277–2292CrossRefGoogle Scholar
  36. Willis GE, Deardorff JW (1976) On the use of Taylor’s translation hypothesis for diffusion in the mixed layer. Q J Roy Meteorol Soc 102: 817–822CrossRefGoogle Scholar
  37. Wyngaard JC, Clifford SF (1977) Taylor’s hypothesis and high frequency turbulence spectra. J Atmos Sci 34: 922–929CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Chad W. Higgins
    • 1
  • Martin Froidevaux
    • 2
  • Valentin Simeonov
    • 2
  • Nikki Vercauteren
    • 2
  • Caitlin Barry
    • 2
  • Marc B. Parlange
    • 2
  1. 1.Department of Biological and Ecological EngineeringOregon State UniversityCorvallisUSA
  2. 2.School of Architecture, Civil and Environmental EngineeringEcole Polytechnique Federale de LausanneLausanneSwitzerland

Personalised recommendations