Advertisement

Boundary-Layer Meteorology

, Volume 143, Issue 2, pp 393–407 | Cite as

Numerical Study of the Neutral Atmospheric Boundary Layer Over Complex Terrain

  • Gilberto A. A. Moreira
  • André A. C. dos Santos
  • Carlos A. M. do Nascimento
  • Ramon M. Valle
Article

Abstract

We evaluate the Reynolds-averaged Navier–Stokes equations available as commercial computational fluid dynamics code for the simulation of a neutral atmospheric boundary layer and attempt to define a proper numerical simulation procedure. Four turbulence models, including two-equation and Reynolds stress models, were evaluated together with two near-wall models. Mesh and map digitization sensitivity tests were also performed. The simulations were compared to experimental field data from the Askervein Hill in Scotland. The results show that the simulations performed with ANSYS CFX 12.1 on a proper mesh and topological map with a Reynolds stress turbulence model provided the best wind-speed predictions when compared to the experimental results.

Keywords

Atmospheric boundary layer Complex topography Turbulence model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertson JD, Parlange MB (1999) Natural integration of scalar fluxes from complex terrain. Adv Water Res 23: 239–252CrossRefGoogle Scholar
  2. Ansys (2009) ANSYS CFX Solver Theory Guide. Release 12.1 edn, 274 ppGoogle Scholar
  3. Arya S, Shipman M (1981) An experimental investigation of flow and diffusion in the disturbed boundary layer over a ridge. Mean flow and turbulence structure. Atmos Environ 15(7): 1173–1184CrossRefGoogle Scholar
  4. Bechmann A, Sørensen NN, Johansen J (2007) Atmospheric flow over terrain using hybrid RANS/LES. In: Scientific proceedings. 2007 European wind energy conference and exhibition, Milan (IT), 7–10 May 2007, pp 9–19Google Scholar
  5. Camilla G, Griff J, Michel O, Vincent D (1999) Transport and mixing in the atmospheric boundary layer. Lecture Notes, Aosta Summer School, AostaGoogle Scholar
  6. Castro FA, Palma JMLM, Lopes AS (2003) Simulation of the Askervein flow. Part 1: Reynolds averaged Navier–Stokes equations (k\({\epsilon}\) turbulence model). Boundary-Layer Meteorol 107: 501–530CrossRefGoogle Scholar
  7. Forthofer JM (2007) Modeling wind in complex terrain for use in fire spread prediction. Theses for the degree of master of science, Colorado State University, Fort Collins, CO, pp 46–47Google Scholar
  8. Holton JR (2004) An introduction to dynamic meteorology, 4th edn. Elsevier Academic Press, New York, 534 ppGoogle Scholar
  9. Kim HG, Patel VC (2000) Test of turbulence models for wind flow over terrain with separation and recirculation. Boundary-Layer Meteorol 94: 5–21CrossRefGoogle Scholar
  10. Kim HG, Patel VC, Lee CM (2000) Numerical simulation of wind flow over hilly terrain. J Wind Eng Ind Aerodyn 87(1): 45–60CrossRefGoogle Scholar
  11. Kristóf G, Rácz N, Balogh M (2009) Adaptation of pressure based CFD solvers for mesoscale atmospheric problems. Boundary-Layer Meteorol 131: 85–103CrossRefGoogle Scholar
  12. Launder BE, Spalding DB (1974) The numerical computation of turbulent flow. Comput Methods Appl Mech Energy 3(2): 269–289CrossRefGoogle Scholar
  13. Lopes AS, Palma JMLM, Castro FA (2007) Simulation of the Askervein flow. Part 2: large eddy simulations. Boundary-Layer Meteorol 125: 85–108CrossRefGoogle Scholar
  14. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8): 269–289CrossRefGoogle Scholar
  15. Montavon C (1998) Validation of a non-hydrostatic numerical model to simulate stratified wind fields over complex topography. J Wind Eng Ind Aerodyn 74–76: 273–282CrossRefGoogle Scholar
  16. Paiva LM, Bodstein GC, Menezes WF (2009) Numerical simulation of atmospheric boundary layer flow over isolated and vegetated hills using RAMS. J Wind Eng Ind Aerodyn 97(9–10): 439–454CrossRefGoogle Scholar
  17. Raithby GD, Stubley GD (1985) Prediction and comparison with experiment of three-dimensional flow over the Askervein Hill. Report. Thermal Science Ltd., WaterlooGoogle Scholar
  18. Raithby GD, Stubley GD, Taylor PA (1987) The Askervein Hill project: a finite control volume prediction of three-dimensional flows over the hill. Boundary-Layer Meteorol 39: 247–267CrossRefGoogle Scholar
  19. Speziale CG, Sparkar S, Gatski TB (1991) Modeling the pressure strain correlation of turbulence: an invariant dynamical system approach. J Fluid Mech 277(1): 245–272CrossRefGoogle Scholar
  20. Taylor PA, Teunissen HW (1983) Askervein 82: an initial report on the September/October 1982 experiment to study boundary layer flow over Askervein. South Uist, Scotland. In: Internal Report MSRB-83-8, Atmospheric Environment Service, Downsview, ON, CanadaGoogle Scholar
  21. Taylor PA, Teunissen HW (1985) The Askervein Hill Project: report on the September/October 1983 main field experiment. In: Internal Report MSRB-84-6, Atmospheric Environment Service, Downsview, ON, CanadaGoogle Scholar
  22. Taylor PA, Teunissen HW (1987) The Askervein Hill project: overview and background data. Boundary-Layer Meteor 39(7): 15–39CrossRefGoogle Scholar
  23. Teunissen HW, Shokr ME, Bowen AJ, Wood CJ, Green DWR (1987) Askervein Hill project: wind-tunnel simulations at three length scales. Boundary-Layer Meteorol 40: 1–29CrossRefGoogle Scholar
  24. Undheim O, Andersson HI, Berge E (2006) Non-linear, microscale modelling of the flow over Askervein Hill. Boundary-Layer Meteorol 120: 477–495CrossRefGoogle Scholar
  25. Varvayanni M, Bartzis J, Catsaros N, Graziani G, Deligiannis P (1998) Numerical simulation of daytime mesoscale flow over highly complex terrain: Alps case. Atmos Environ 32(7): 1301–1316CrossRefGoogle Scholar
  26. Yakhot V, Orzag S (1986) Renormalization group analysis of turbulence. J Sci Comput 1: 1–51CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Gilberto A. A. Moreira
    • 1
  • André A. C. dos Santos
    • 2
  • Carlos A. M. do Nascimento
    • 3
  • Ramon M. Valle
    • 1
  1. 1.Federal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Nuclear Technology Development Center (CDTN)Belo HorizonteBrazil
  3. 3.Cia. Energética de Minas Gerais (CEMIG)Belo HorizonteBrazil

Personalised recommendations