Skip to main content
Log in

Large-Eddy Simulation of Inhomogeneous Canopy Flows Using High Resolution Terrestrial Laser Scanning Data

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The effect of sub-tree forest heterogeneity in the flow past a clearing is investigated by means of large-eddy simulation (LES). For this purpose, a detailed representation of the canopy has been acquired by terrestrial laser scanning for a patch of approximately 190 m length in the field site “Tharandter Wald”, near the city of Dresden, Germany. The scanning data are used to produce a high resolution plant area distribution (PAD) that is averaged over approximately one tree height (30 m) along the transverse direction, in order to simplify the LES study. Despite the smoothing involved with this procedure, the resulting two-dimensional PAD maintains a rich vertical and horizontal structure. For the LES study, the PAD is embedded in a larger domain covered with an idealized, horizontally homogeneous canopy. Simulations are performed for neutral conditions and compared to a LES with homogeneous PAD and recent field measurements. The results reveal a considerable influence of small-scale plant distribution on the mean velocity field as well as on turbulence data. Particularly near the edges of the clearing, where canopy structure is highly variable, usage of a realistic PAD appears to be crucial for capturing the local flow structure. Inside the forest, local variations in plant density induce a complex pattern of upward and downward motions, which remain visible in the mean flow and make it difficult to identify the “adjustment zone” behind the windward edge of the clearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aschoff T, Spiecker H (2004) Algorithms for the automatic detection of trees in laser scanner data. In: Int Arch Photogramm, Remote Sens Spat Inf Sci XXXVI-8/W2:71–75

  • Belcher S, Jerram N, Hunt J (2003) Adjustment of a turbulent boundary layer to a canopy of roughness elements. J Fluid Mech 488: 369–398. doi:10.1017/S0022112003005019

    Article  Google Scholar 

  • Bernhofer C, Aubinet M, Clement R, Grelle A, Gruenwald T, Ibrom A, Jarvis P, Rebmann C, Schulze E, Tenhunen J (2003) Fluxes of carbon, water and energy of European forests. In: Ecological studies, vol 163, Springer, Chap Spruce forests (Norway and Sitka spruce, including Douglas fir): Carbon and water fluxes and balances, ecological and ecophysiological determinants, pp 99–123

  • Bienert A, Maas HG (2009) Methods for the automatic geometric registration of terrestrial laserscanner point clouds in forest stands. In: Int Arch Photogramm, Remote Sens Spat Inf Sci XXXVIII-3/W8:1–6

  • Bienert A, Queck R, Schmidt A, Bernhofer C, Maas HG (2010) Voxel space analysis of terrestrial laser scans in forests for wind field modelling. In: Int Arch Photogramm, Remote Sens Spat Inf Sci XXXVIII—Part 5:92–97

  • Bohrer G, Wolosin M, Brady R, Avissar R (2007) A virtual canopy generator (v-cage) for modelling complex heterogeneous forest canopies at high resolution. Tellus B 59: 566–576. doi:10.1111/j.1600-0889.2007.00253.x

    Article  Google Scholar 

  • Bohrer G, Katul G, Nathan R, Walko R, Avissar R (2008) Effects of canopy heterogeneity, seed abscission and inertia on wind-driven dispersal kernels of tree seeds. J Ecol 96: 569–580

    Article  Google Scholar 

  • Bohrer G, Katul G, Walko R, Avissar R (2009) Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations. Boundary-Layer Meteorol 132: 351–382

    Article  Google Scholar 

  • Cassiani M, Katul G, Albertson J (2008) The effects of canopy leaf area index on airflow across forest edges: large-eddy simulation and analytical results. Boundary-Layer Meteorol 126: 433–460. doi:10.1007/s10546-007-9242-1

    Article  Google Scholar 

  • Chester S, Meneveau C (2007) Renormalized numerical simulation of flow over planar and non-planar fractal trees. Environ Fluid Mech 7: 289–301. doi:10.1007/s10652-007-9026-7

    Article  Google Scholar 

  • de Langre E (2008) Effects of wind on plants. Annu Rev Fluid Mech 40: 141–168. doi:10.1146/annurev.fluid.40.111406.102135

    Article  Google Scholar 

  • Deardorff J (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18: 495–527

    Article  Google Scholar 

  • Detto M, Katul G, Siqueira M, Juang JY, Stoy P (2008) The structure of turbulence near a tall forest edge: the backward-facing step flow analogy revisited. Ecol Appl 18: 1420–1435

    Article  Google Scholar 

  • Dupont S, Brunet Y (2008) Edge flow and canopy structure: a large-eddy simulation study. Boundary-Layer Meteorol 126:51–71. doi:10.1007/s10546-007-9216-3

  • Dupont S, Brunet Y (2009) Coherent structures in canopy edge flow: a large-eddy simulation study. J Fluid Mech 630: 93–128

    Article  Google Scholar 

  • Dupont S, Gosselin F, Py C, de Langre E, Hemon P, Brunet Y (2010) Modelling waving crops using large-eddy simulation: comparison with experiments and a linear stability analysis. J Fluid Mech 652:5–44. doi:10.1017/S0022112010000686

    Google Scholar 

  • Dupont S, Bonnefond JM, Irvine M, Lamaud E, Brunet Y (2011) Long-distance edge effects in a pine forest with a deep and sparse trunk space: in situ and numerical experiments. Agric For Meteorol 151:328–344. doi:10.1016/j.agrformet.2010.11.007

  • Endalew A, Hertog M, Delele M, Baetens K, Persoons T, Baelmans M, Ramon H, Nicolai B, Verboven P (2009) Cfd modelling and wind tunnel validation of airflow through plant canopies using 3D canopy architecture. Int J Heat Fluid Flow 30:356–368. doi:10.1016/j.ijheatfluidflow.2008.12.007

    Google Scholar 

  • Endalew A, Debaer C, Rutten N, Vercammen J, Delele M, Ramon H, Nicolaï B, Verboven P (2011) Modelling the effect of tree foliage on sprayer airflow in orchards. Boundary-Layer Meteorol 138:139–162. doi:10.1007/s10546-010-9544-6

    Google Scholar 

  • Feigenwinter C, Bernhofer C, Vogt R (2004) The influence of advection on the short term CO2—budget in and above a forest canopy. Boundary-Layer Meteorol 113: 201–224

    Article  Google Scholar 

  • Ferziger J, Peric M (1996) Computational methods for fluid dynamics. Springer, Berlin

    Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32: 519–571

    Article  Google Scholar 

  • Finnigan J, Shaw R, Patton E (2009) Turbulence structure above a vegetation canopy. J Fluid Mech 637: 387–424. doi:10.1017/S0022112009990589

    Article  Google Scholar 

  • Gash J (1986) Observations of turbulence downwind of a forest–heath interface. Boundary-Layer Meteorol 36: 227–237

    Article  Google Scholar 

  • Gruenwald T, Bernhofer C (2007) A decade of carbon, water and energy flux measurements of an old spruce forest at the anchor station tharandt. Tellus B 59: 387–396

    Article  Google Scholar 

  • Irvine M, Gardiner B, Hill M (1997) The evolution of turbulence across a forest edge. Boundary-Layer Meteorol 84: 467–496

    Article  Google Scholar 

  • Issa I (1985) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62: 40–65

    Article  Google Scholar 

  • Jasak H (1996) Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College, London

  • Lee X (2000) Air motion within and above forest vegetation in non-ideal conditions. For Ecol Manag 135: 3–18

    Article  Google Scholar 

  • Maas HG, Bienert A, Scheller S, Keane E (2008) Automatic forest inventory parameter determination from terrestrial laserscanner data. Int J Remote Sens 29(5):1579–1593. doi:10.1080/01431160701736406

    Google Scholar 

  • Morse A, Gardiner B, Marshall B (2002) Mechanisms controlling turbulence development across a forest edge. Boundary-Layer Meteorol 103: 227–251

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge, 806 pp

  • Queck R, Bernhofer C (2010) Constructing wind profiles in forests from limited measurements of wind and vegetation structure. Agric For Meteorol 150:724–735. doi:10.1016/j.agrformet.2010.01.012

    Google Scholar 

  • Queck R, Bienert A, Maas HG, Harmansa S, Goldberg V, Bernhofer C (2011) Wind fields in heterogeneous conifer canopies: parameterisation of momentum absorption using high-resolution 3D vegetation scans. Eur J For Res 1–12. doi:10.1007/s10342-011-0550-0

  • Raupach M, Thom A (1981) Turbulence in and above plant canopies. Annu Rev Fluid Mech 13: 97–129

    Article  Google Scholar 

  • Raupach M, Finnigan J, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78: 351–382

    Article  Google Scholar 

  • Raynor G (1971) Wind and temperature structure in a coniferous forest and a contiguous field. For Sci 17: 351–363

    Google Scholar 

  • Ryu Y, Nilson T, Kobayashi H, Sonnentag O, Law B, Baldocchi D (2010) On the correct estimation of effective leaf area index: does it reveal information on clumping effects? Agric For Meteorol 150:463–472. doi:10.1016/j.agrformet.2010.01.009

    Google Scholar 

  • Sagaut P (1998) Large eddy simulation for incompressible flows. Springer, New York

    Google Scholar 

  • Schmidt H, Schumann U (1989) Coherent structure of the convective boundary layer derived from large-eddy simulations. J Fluid Mech 200: 511–562

    Article  Google Scholar 

  • Shaw R, Patton E (2003) Canopy element influences on resolved- and subgrid-scale energy within a large-eddy simulation. Agric For Meteorol 115: 5–17

    Article  Google Scholar 

  • Shaw R, Schumann U (1992) Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol 61: 47–64

    Article  Google Scholar 

  • Sogachev A, Leclerc M, Zhang G, Rannik Ů, Vesala T (2008) CO2 fluxes near a forest edge: a numerical study. Ecol Appl 16(6): 1454–1469

    Article  Google Scholar 

  • Sweby P (1984) High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21(5): 995–1011

    Article  Google Scholar 

  • Vosselman G, Maas HG (2010) Airborne and terrestrial laser scanning. Whittles Publishing, Dunbeath, 336 pp

  • Weller G, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12(6): 620–631

    Article  Google Scholar 

  • Yang B, Morse A, Shaw R, Paw U KT (2006a) Large-eddy simulation of turbulent flow across a forest edge. Part II: Momentum and turbulent kinetic energy budgets. Boundary-Layer Meteorol 121:433–457. doi:10.1007/s10546-006-9083-3

  • Yang B, Raupach M, Shaw R, Paw U KT, Morse A (2006b) Large-eddy simulation of turbulent flow across a forest edge. Part I: Flow statistics. Boundary-Layer Meteorol 120:377–412. doi:10.1007/s10546-006-9057-5

  • Yue W, Parlange M, Meneveau C, Zhu W, van Hout R, Katz J (2007) Large-eddy simulation of plant canopy flows using plant-scale representation. Boundary-Layer Meteorol 124:183–203. doi:10.1007/s10546-007-9173-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Schlegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlegel, F., Stiller, J., Bienert, A. et al. Large-Eddy Simulation of Inhomogeneous Canopy Flows Using High Resolution Terrestrial Laser Scanning Data. Boundary-Layer Meteorol 142, 223–243 (2012). https://doi.org/10.1007/s10546-011-9678-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-011-9678-1

Keywords

Navigation