Skip to main content
Log in

Strong Updraft at a Sea-Breeze Front and Associated Vertical Transport of Near-Surface Dense Aerosol Observed by Doppler Lidar and Ceilometer

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

To study the wind field within the atmospheric boundary layer over the Tokyo metropolitan area, Doppler lidar observations were made 45 km north of Sagami Bay and 30 km west of Tokyo Bay, from 14 May to 15 June 2008. Doppler lidar on 27 May 2008 observed the vertical and horizontal wind structure of a well-developed sea-breeze front (SBF) penetrating from Sagami Bay. At the SBF, a strong updraft (maximum w approximately equal to 5 m s−1) was formed with a horizontal scale of about 500 m and vertical scale of 2 km. The spatial relationship between the strong updraft over the nose of the SBF and prefrontal thermal suggests that the strong updraft was triggered by interaction between the SBF and the thermal. After the updraft commenced, a collocated ceilometer observed an intense aerosol backscatter up to 2 km above ground level. The observational results suggest that the near-surface denser aerosols trapped in the head region of the SBF escaped from the nose of the SBF and were then vertically transported up to the mixing height by the strong updraft at the SBF. This implies that these phenomena occurred not continuously but intermittently. The interaction situations between the SBF and prefrontal thermal can affect the wind structure at the SBF and the regional air quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbs DJ, Physick WJ (1992) Sea-breeze observation and modeling: a review. Aust Meteorol Mag 41: 7–19

    Google Scholar 

  • Atkins NT, Wakimoto RM (1997) Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon Weather Rev 125: 2112–2130

    Article  Google Scholar 

  • Atkins NT, Wakimoto RM, Weckwerth TM (1995) Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon Weather Rev 123: 944–969

    Article  Google Scholar 

  • Banta RM (1995) Sea breezes shallow and deep on the California coast. Mon Weather Rev 123: 3614–3622

    Article  Google Scholar 

  • Banta RM, Oliver LD, Levinson DH (1993) Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar. J Atmos Sci 50: 3959–3982

    Article  Google Scholar 

  • Banta RM, Senff CJ, Nielsen-Gammon J, Darby LS, Ryerson TB, Alvarez RJ, Sandberg SP, Williams EJ, Trainer M (2005) A bad air day in Houston. Bull Am Meteorol Soc 86: 657–669

    Article  Google Scholar 

  • Bastin S, Drobinski P (2006) Sea-breeze-induced mass transport over complex terrain in south-eastern France: a case-study. Q J Roy Meteorol Soc 132: 405–423

    Article  Google Scholar 

  • Bastin S, Drobinski P, Dabas AM, Delville P, Reitebuch O, Werner C (2005) Impact of the Rhone and Durance valleys on sea breeze circulation in the Marseille area. Atmos Res 74: 303–328

    Article  Google Scholar 

  • Brown RA (1980) Longitudinal instabilities and secondary flows in the planetary boundary layer: a review. Rev Geophys Space Phys 18: 683–697

    Article  Google Scholar 

  • Browning RA, Wexler R (1968) The determination of kinematic properties of a wind field using Doppler radar. J Appl Meteorol 7: 105–113

    Article  Google Scholar 

  • Chiba O (1993) The turbulent characteristics in the lowest port of the sea breeze front in the atmospheric surface layer. Boundary-Layer Meteorol 65: 181–195

    Article  Google Scholar 

  • Chiba O (1997) Variability of the sea-breeze front from sodar measurements. Boundary-Layer Meteorol 82: 165–174

    Article  Google Scholar 

  • Cressman GP (1959) An operational objective analysis system. Mon Weather Rev 87: 367–374

    Article  Google Scholar 

  • Cros B, Durand P, Cachier H, Drobinski P, Fréjafon E, Kottmeïer C, Perros PE, Peuch VH, Ponche JL, Robin D, Saïd F, Toupance G, Wortham H (2004) The ESCOMPTE program: an overview. Atmos Res 69: 241–279

    Article  Google Scholar 

  • Darby LS (2005) Cluster analysis of surface winds in Houston, Texas, and the impact of wind patterns on ozone. J Appl Meteorol 44: 1788–1806

    Article  Google Scholar 

  • Darby LS, Banta RM, Brewer WA, Neff WD, Marchbanks RD, McCarty BJ, Senff CJ, White AB, Angevine WM, Williams EJ (2002) Vertical variations in O3 concentrations before and after a gust front passage. J Geophys Res 107(D13): 4176. doi:10.1029/2001JD000996

    Article  Google Scholar 

  • Dérian P, Héas P, Mémin E, Mayor SD (2010) Dense motion estimation from eye-safe aerosol lidar data. In: Proceedings of the 25th international laser radar conference, St. Petersburg, Russia, 5–9 July 2010, pp 377–380

  • Emeis S, Münkel C, Vogt S, Muller WJ, Schafer K (2004) Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements. Atmos Environ 38: 273–286

    Article  Google Scholar 

  • Etling D, Brown RA (1993) Roll vortices in the planetary boundary layer: a review. Boundary-Layer Meteorol 65: 215–248

    Article  Google Scholar 

  • Finkele K, Hacker JM, Kraus H, Byron-Scott RAD (1995) A complete sea-breeze circulation cell derived from aircraft observations. Boundary-Layer Meteorol 73: 299–317

    Article  Google Scholar 

  • Fitzgerald JW (1989) Model of the aerosol extinction profile in a well-mixed marine boundary layer. Appl Opt 28: 3534–3538

    Article  Google Scholar 

  • Frehlich RG (1995) Comparison of 2- and 10-μm coherent Doppler lidar performance. J Atmos Ocean Technol 14: 415–420

    Article  Google Scholar 

  • Gal-Chen T (1982) Errors in fixed and moving frame of references: applications for conventional and Doppler radar analysis. J Atmos Sci 39: 2279–2300

    Article  Google Scholar 

  • Gao J, Xue M, Shapiro A, Droegemeier KK (1999) A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon Weather Rev 127: 2128–2142

    Article  Google Scholar 

  • Gibert F, Cuesta J, Yano J, Arnault N, Flamant PH (2007) On the correlation between convective plume updrafts and downdrafts, lidar reflectivity and depolarization ratio. Boundary-Layer Meteorol 125: 553–573

    Article  Google Scholar 

  • Helmis CG, Asimakopoulos DN, Deligiorgi DG, Lalas DP (1987) Observations of sea-breeze fronts near the shoreline. Boundary-Layer Meteorol 38: 395–410

    Article  Google Scholar 

  • Henderson SW, Suni PJM, Hale CP, Hannon SM, Magee JR, Bruns DL, Yuen EH (1993) Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans Geosci Remote Sens 31: 4–15

    Article  Google Scholar 

  • Intrieri JM, Bedard AJ, Hardesty RM (1990) Details of colliding thunderstorm outflows as observed by Doppler lidar. J Atmos Sci 47: 1081–1099

    Article  Google Scholar 

  • Ishii S, Mizutani K, Aoki T, Sasano M, Myrayama Y, Itabe T, Asahi K (2005) Wind profiling with an eye-safe coherent Doppler lidar system: comparison with radiosondes and VHF radar. J Meteorol Soc Jpn 83: 1041–1056

    Article  Google Scholar 

  • Ishii S, Sasaki K, Mizutani K, Aoki T, Itabe T, Kanno H, Matsushima D, Sha W, Noda A, Sawada M, Ujiie M, Matsuura Y, Iwasaki T (2007) Temporal evolution and spatial structure of the local easterly wind “Kiyokawa-dashi” in Japan. Part I: Coherent Doppler lidar observations. J Meteorol Soc Jpn 85: 797–813

    Article  Google Scholar 

  • Iwai H, Ishii S, Tsunematsu N, Mizutani K, Murayama Y, Itabe T, Yamada I, Matayoshi N, Matsushima D, Sha W, Yamazaki T, Iwasaki T (2008) Dual-Doppler lidar observation of horizontal convective rolls and near-surface streaks. Geophys Res Lett 35: L14808. doi:10.1029/2008GL034571

    Article  Google Scholar 

  • Kai K, Ura K, Kawamura T, Ono H (1995) A case study on the Kanpachi Street cloud (in Japanese). Tenki 42: 417–427

    Google Scholar 

  • Kanda M, Inoue Y, Uno I (2001) Numerical study on cloud lines over an urban street in Tokyo. Boundary-Layer Meteorol 98: 251–273

    Article  Google Scholar 

  • Kolev I, Parvanov O, Kaprielov B, Donev E, Ivanov D (1998) Lidar observations of sea-breeze and land-breeze aerosol structure on the Black Sea. J Appl Meteorol 37: 982–995

    Article  Google Scholar 

  • Kraus H, Hacker JM, Hartmann J (1990) An observational aircraft-based study of sea-breeze frontogenesis. Boundary-Layer Meteorol 53: 223–265

    Article  Google Scholar 

  • Lapworth A (2000) Observations of atmospheric density currents using a tethered balloonborne turbulence probe system. Q J Roy Meteorol Soc 126: 2811–2850

    Article  Google Scholar 

  • Lemonsu A, Bastin S, Masson V, Drobinski P (2006) Vertical structure of the urban boundary layer over Marseille under sea-breeze conditions. Boundary-Layer Meteorol 118: 477–501

    Article  Google Scholar 

  • Lin C-L, Moeng CH, Sullivan PP, McWilliams JC (1997) The effect of surface roughness on flow structures in a neutrally stratified planetary boundary layer. Phys Fluids 9: 3235–3249

    Article  Google Scholar 

  • Lyons WA, Olsson LE (1973) Detailed mesometeorological studies of air pollution dispersion in the Chicago lake breeze. Mon Weather Rev 101: 387–403

    Article  Google Scholar 

  • Lyons WA, Pielke RA, Tremback CJ, Walko RL, Moon DA, Keen CS (1995) Modeling impacts of mesoscale vertical motions upon coastal zone air pollution dispersion. Atmos Environ 29: 283–301

    Article  Google Scholar 

  • Mayor SD (2010) Horizontal motion vectors from cross-correlation: first application to eye-safe aerosol lidar data from CHATS. In: Proceedings of the 25th international laser radar conference, St. Petersburg, Russia, 5–9 July 2010, pp 317–320

  • Mayor SD (2011) Observations of seven density current fronts in Dixon, California. Mon Weather Rev 139: 1338–1351

    Article  Google Scholar 

  • Mayor SD, Dérian P, Héas P, Mémin E (2010) Two-component horizontal motion vectors from eye-safe aerosol lidar. In: 19th symposium on boundary layers and turbulence, Keystone, CO, 2–6 Aug 2010

  • Miller STK, Keim BD, Talbot RW, Mao H (2003) Sea breeze: structure, forecasting, and impacts. Rev Geophys 41(3): 1011. doi:10.1029/2003RG000124

    Article  Google Scholar 

  • Mitsumoto S, Ueda H, Ozoe H (1983) A laboratory experiment on the dynamics of the land and sea breeze. J Atmos Sci 40: 1228–1240

    Article  Google Scholar 

  • Münkel C, Eresmaa N, Räsänen J., Karppinen A (2007) Retrieval of mixing height and dust concentration with lidar ceilometer. Boundary-Layer Meteorol 124: 117–128

    Article  Google Scholar 

  • Nakane H, Sasano Y (1986) Structure of a sea-breeze front revealed by scanning lidar observation. J Meteorol Soc Jpn 64:787–792

    Google Scholar 

  • Newsom RK, Calhoun R, Ligon D, Allwine J (2008) Linearly organized turbulence structures observed over a suburban area by dual-Doppler lidar. Boundary-Layer Meteorol 127: 111–130

    Article  Google Scholar 

  • Ogawa S, Sha W, Iwasaki T, Wang Z (2003) A numerical study on the interaction of a sea-breeze front with convective cells in the daytime boundary layer. J Meteorol Soc Jpn 81: 635–651

    Article  Google Scholar 

  • Ohno H, Suzuki O (1993) Small-scale high wind cores enhancing low-level wind shear: Doppler radar observation of opposing wind adjacent to the sea-breeze frontal zone on 20 September 1989. Meteorol Atmos Phys 81: 635–651

    Google Scholar 

  • Parrish DD, Allen DT, Bates TS, Estes M, Fehsenfeld FC, Feingold G, Ferrare R, Hardesty RM, Meagher JF, Nielsen-Gammon JW, Pierce RB, Ryerson TB, Seinfeld JH, Williams EJ (2009) Overview of the Second Texas Air Quality Study (TexAQS II) and the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). J Geophys Res 114: D00F13. doi:10.1029/2009JD011842

    Article  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical recipes in C. Cambridge University Press, New York, 317 pp

    Google Scholar 

  • Reible DD, Simpson JE, Linden PF (1993) The sea breeze and gravity-current frontogenesis. Q J Roy Meteorol Soc 119: 1–16

    Article  Google Scholar 

  • Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34: 1001–1027

    Article  Google Scholar 

  • Sha W, Kawamura T, Ueda H (1991) A numerical study on sea/land breezes as a gravity current: Kelvin-Helmholtz billows and inland penetration of the sea-breeze front. J Atmos Sci 48: 1649–1665

    Article  Google Scholar 

  • Sha W, Kawamura T, Ueda H (1993) A numerical study of nocturnal sea/land breezes: prefrontal gravity waves in the compensating flow and inland penetration of the sea-breeze cutoff vortex. J Atmos Sci 50: 1076–1088

    Article  Google Scholar 

  • Simpson JE (1969) A comparison between laboratory and atmospheric density currents. Q J Roy Meteorol Soc 95:758–765

    Article  Google Scholar 

  • Simpson JE (1994) Sea breeze and local wind. Cambridge University Press, New York, 234 pp

    Google Scholar 

  • Simpson JE, Britter RE (1980) A laboratory model of an atmospheric mesofront. Q J Roy Meteorol Soc 106: 485–500

    Article  Google Scholar 

  • Simpson JE, Mansfield DA, Milford JR (1977) Inland penetration of sea breeze fronts. Q J Roy Meteorol Soc 103: 47–76

    Article  Google Scholar 

  • Srivastava V, Jarzembski MA, Bowdle DA (1992) Comparison of calculated aerosol backscatter at 9.1- and 2.1-μm wavelengths. Appl Opt 31: 1904–1906

    Article  Google Scholar 

  • Stephan K, Kraus H, Ewenz CM, Hacker JM (1999) Sea-breeze front variations in space and time. Meteorol Atmos Phys 70: 81–95

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

    Google Scholar 

  • Thompson WT, Holt T, Pullen J (2007) Investigation of a sea breeze front in an urban environment. Q J Roy Meteorol Soc 133: 579–594

    Article  Google Scholar 

  • Tsunematsu N, Iwai H, Ishii S, Murayama Y, Yasui M, Mizutani K (2009) The formation of sharp multi-layered wind structure over Tokyo associated with sea-breeze circulation. SOLA 5: 1–4

    Article  Google Scholar 

  • Tucker SC, Banta RM, Langford AO, Senff CJ, Brewer WA, Williams EJ, Lerner BM, Osthoff H, Hardesty RM (2010) Relationships of coastal nocturnal boundary layer winds and turbulence to Houston ozone concentrations during TexAQS 2006. J Geophys Res 115: D10304. doi:10.1029/2009JD013169

    Article  Google Scholar 

  • Ueda H, Mitsumoto S, Kurita H (1988) Flow mechanism for the long-range transport of air pollutants by the sea breeze causing inland nighttime high oxidants. J Appl Meteorol 27: 182–187

    Article  Google Scholar 

  • Vaisala (1999) Ceilometer CT25K user’s guide. CT25K-U059en-2.1, Helsinki

  • Wakimoto RM (1982) The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon Weather Rev 110: 1060–1082

    Article  Google Scholar 

  • Wakimoto RM, Atkins NT (1994) Observations of the sea-breeze front during CaPE, Part I: Single-Doppler, satellite, and cloud photogrammetry analysis. Mon Weather Rev 122: 1092–1114

    Article  Google Scholar 

  • Wallington CE (1959) The structure of the sea breeze front as revealed by gliding flights. Weather 14: 263–270

    Google Scholar 

  • Wood R, Storomberg IM, Jonas PR (1999) Aircraft observation of sea-breeze frontal structure. Q J Roy Meteorol Soc 125: 1959–1995

    Article  Google Scholar 

  • Xu Q (1992) Density currents in shear flows—a two-fluid model. J Atmos Sci 49: 511–524

    Article  Google Scholar 

  • Yasui M, Zhou J, Liu L, Itabe T, Mizutani K, Aoki T (2005) Vertical profiles of aeolian dust in a desert atmosphere observed using lidar in Shapotou, China. J Meteorol Soc Jpn 83: 149–171

    Article  Google Scholar 

  • Yoshikado H (1990) Vertical structure of the sea breeze penetrating through a large urban complex. J Appl Meteorol 29: 878–891

    Article  Google Scholar 

  • Yoshikado H, Kondo H (1989) Inland penetration of the sea breeze over the suburban area of Tokyo. Boundary-Layer Meteorol 48: 389–407

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Iwai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwai, H., Murayama, Y., Ishii, S. et al. Strong Updraft at a Sea-Breeze Front and Associated Vertical Transport of Near-Surface Dense Aerosol Observed by Doppler Lidar and Ceilometer. Boundary-Layer Meteorol 141, 117–142 (2011). https://doi.org/10.1007/s10546-011-9635-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-011-9635-z

Keywords

Navigation