Boundary-Layer Meteorology

, 141:117 | Cite as

Strong Updraft at a Sea-Breeze Front and Associated Vertical Transport of Near-Surface Dense Aerosol Observed by Doppler Lidar and Ceilometer

  • Hironori Iwai
  • Yasuhiro Murayama
  • Shoken Ishii
  • Kohei Mizutani
  • Yuichi Ohno
  • Taichiro Hashiguchi


To study the wind field within the atmospheric boundary layer over the Tokyo metropolitan area, Doppler lidar observations were made 45 km north of Sagami Bay and 30 km west of Tokyo Bay, from 14 May to 15 June 2008. Doppler lidar on 27 May 2008 observed the vertical and horizontal wind structure of a well-developed sea-breeze front (SBF) penetrating from Sagami Bay. At the SBF, a strong updraft (maximum w approximately equal to 5 m s−1) was formed with a horizontal scale of about 500 m and vertical scale of 2 km. The spatial relationship between the strong updraft over the nose of the SBF and prefrontal thermal suggests that the strong updraft was triggered by interaction between the SBF and the thermal. After the updraft commenced, a collocated ceilometer observed an intense aerosol backscatter up to 2 km above ground level. The observational results suggest that the near-surface denser aerosols trapped in the head region of the SBF escaped from the nose of the SBF and were then vertically transported up to the mixing height by the strong updraft at the SBF. This implies that these phenomena occurred not continuously but intermittently. The interaction situations between the SBF and prefrontal thermal can affect the wind structure at the SBF and the regional air quality.


Ceilometer Doppler lidar Remote sensing Sea-breeze front Urban boundary layer 


  1. Abbs DJ, Physick WJ (1992) Sea-breeze observation and modeling: a review. Aust Meteorol Mag 41: 7–19Google Scholar
  2. Atkins NT, Wakimoto RM (1997) Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon Weather Rev 125: 2112–2130CrossRefGoogle Scholar
  3. Atkins NT, Wakimoto RM, Weckwerth TM (1995) Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon Weather Rev 123: 944–969CrossRefGoogle Scholar
  4. Banta RM (1995) Sea breezes shallow and deep on the California coast. Mon Weather Rev 123: 3614–3622CrossRefGoogle Scholar
  5. Banta RM, Oliver LD, Levinson DH (1993) Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar. J Atmos Sci 50: 3959–3982CrossRefGoogle Scholar
  6. Banta RM, Senff CJ, Nielsen-Gammon J, Darby LS, Ryerson TB, Alvarez RJ, Sandberg SP, Williams EJ, Trainer M (2005) A bad air day in Houston. Bull Am Meteorol Soc 86: 657–669CrossRefGoogle Scholar
  7. Bastin S, Drobinski P (2006) Sea-breeze-induced mass transport over complex terrain in south-eastern France: a case-study. Q J Roy Meteorol Soc 132: 405–423CrossRefGoogle Scholar
  8. Bastin S, Drobinski P, Dabas AM, Delville P, Reitebuch O, Werner C (2005) Impact of the Rhone and Durance valleys on sea breeze circulation in the Marseille area. Atmos Res 74: 303–328CrossRefGoogle Scholar
  9. Brown RA (1980) Longitudinal instabilities and secondary flows in the planetary boundary layer: a review. Rev Geophys Space Phys 18: 683–697CrossRefGoogle Scholar
  10. Browning RA, Wexler R (1968) The determination of kinematic properties of a wind field using Doppler radar. J Appl Meteorol 7: 105–113CrossRefGoogle Scholar
  11. Chiba O (1993) The turbulent characteristics in the lowest port of the sea breeze front in the atmospheric surface layer. Boundary-Layer Meteorol 65: 181–195CrossRefGoogle Scholar
  12. Chiba O (1997) Variability of the sea-breeze front from sodar measurements. Boundary-Layer Meteorol 82: 165–174CrossRefGoogle Scholar
  13. Cressman GP (1959) An operational objective analysis system. Mon Weather Rev 87: 367–374CrossRefGoogle Scholar
  14. Cros B, Durand P, Cachier H, Drobinski P, Fréjafon E, Kottmeïer C, Perros PE, Peuch VH, Ponche JL, Robin D, Saïd F, Toupance G, Wortham H (2004) The ESCOMPTE program: an overview. Atmos Res 69: 241–279CrossRefGoogle Scholar
  15. Darby LS (2005) Cluster analysis of surface winds in Houston, Texas, and the impact of wind patterns on ozone. J Appl Meteorol 44: 1788–1806CrossRefGoogle Scholar
  16. Darby LS, Banta RM, Brewer WA, Neff WD, Marchbanks RD, McCarty BJ, Senff CJ, White AB, Angevine WM, Williams EJ (2002) Vertical variations in O3 concentrations before and after a gust front passage. J Geophys Res 107(D13): 4176. doi: 10.1029/2001JD000996 CrossRefGoogle Scholar
  17. Dérian P, Héas P, Mémin E, Mayor SD (2010) Dense motion estimation from eye-safe aerosol lidar data. In: Proceedings of the 25th international laser radar conference, St. Petersburg, Russia, 5–9 July 2010, pp 377–380Google Scholar
  18. Emeis S, Münkel C, Vogt S, Muller WJ, Schafer K (2004) Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements. Atmos Environ 38: 273–286CrossRefGoogle Scholar
  19. Etling D, Brown RA (1993) Roll vortices in the planetary boundary layer: a review. Boundary-Layer Meteorol 65: 215–248CrossRefGoogle Scholar
  20. Finkele K, Hacker JM, Kraus H, Byron-Scott RAD (1995) A complete sea-breeze circulation cell derived from aircraft observations. Boundary-Layer Meteorol 73: 299–317CrossRefGoogle Scholar
  21. Fitzgerald JW (1989) Model of the aerosol extinction profile in a well-mixed marine boundary layer. Appl Opt 28: 3534–3538CrossRefGoogle Scholar
  22. Frehlich RG (1995) Comparison of 2- and 10-μm coherent Doppler lidar performance. J Atmos Ocean Technol 14: 415–420CrossRefGoogle Scholar
  23. Gal-Chen T (1982) Errors in fixed and moving frame of references: applications for conventional and Doppler radar analysis. J Atmos Sci 39: 2279–2300CrossRefGoogle Scholar
  24. Gao J, Xue M, Shapiro A, Droegemeier KK (1999) A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon Weather Rev 127: 2128–2142CrossRefGoogle Scholar
  25. Gibert F, Cuesta J, Yano J, Arnault N, Flamant PH (2007) On the correlation between convective plume updrafts and downdrafts, lidar reflectivity and depolarization ratio. Boundary-Layer Meteorol 125: 553–573CrossRefGoogle Scholar
  26. Helmis CG, Asimakopoulos DN, Deligiorgi DG, Lalas DP (1987) Observations of sea-breeze fronts near the shoreline. Boundary-Layer Meteorol 38: 395–410CrossRefGoogle Scholar
  27. Henderson SW, Suni PJM, Hale CP, Hannon SM, Magee JR, Bruns DL, Yuen EH (1993) Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans Geosci Remote Sens 31: 4–15CrossRefGoogle Scholar
  28. Intrieri JM, Bedard AJ, Hardesty RM (1990) Details of colliding thunderstorm outflows as observed by Doppler lidar. J Atmos Sci 47: 1081–1099CrossRefGoogle Scholar
  29. Ishii S, Mizutani K, Aoki T, Sasano M, Myrayama Y, Itabe T, Asahi K (2005) Wind profiling with an eye-safe coherent Doppler lidar system: comparison with radiosondes and VHF radar. J Meteorol Soc Jpn 83: 1041–1056CrossRefGoogle Scholar
  30. Ishii S, Sasaki K, Mizutani K, Aoki T, Itabe T, Kanno H, Matsushima D, Sha W, Noda A, Sawada M, Ujiie M, Matsuura Y, Iwasaki T (2007) Temporal evolution and spatial structure of the local easterly wind “Kiyokawa-dashi” in Japan. Part I: Coherent Doppler lidar observations. J Meteorol Soc Jpn 85: 797–813CrossRefGoogle Scholar
  31. Iwai H, Ishii S, Tsunematsu N, Mizutani K, Murayama Y, Itabe T, Yamada I, Matayoshi N, Matsushima D, Sha W, Yamazaki T, Iwasaki T (2008) Dual-Doppler lidar observation of horizontal convective rolls and near-surface streaks. Geophys Res Lett 35: L14808. doi: 10.1029/2008GL034571 CrossRefGoogle Scholar
  32. Kai K, Ura K, Kawamura T, Ono H (1995) A case study on the Kanpachi Street cloud (in Japanese). Tenki 42: 417–427Google Scholar
  33. Kanda M, Inoue Y, Uno I (2001) Numerical study on cloud lines over an urban street in Tokyo. Boundary-Layer Meteorol 98: 251–273CrossRefGoogle Scholar
  34. Kolev I, Parvanov O, Kaprielov B, Donev E, Ivanov D (1998) Lidar observations of sea-breeze and land-breeze aerosol structure on the Black Sea. J Appl Meteorol 37: 982–995CrossRefGoogle Scholar
  35. Kraus H, Hacker JM, Hartmann J (1990) An observational aircraft-based study of sea-breeze frontogenesis. Boundary-Layer Meteorol 53: 223–265CrossRefGoogle Scholar
  36. Lapworth A (2000) Observations of atmospheric density currents using a tethered balloonborne turbulence probe system. Q J Roy Meteorol Soc 126: 2811–2850CrossRefGoogle Scholar
  37. Lemonsu A, Bastin S, Masson V, Drobinski P (2006) Vertical structure of the urban boundary layer over Marseille under sea-breeze conditions. Boundary-Layer Meteorol 118: 477–501CrossRefGoogle Scholar
  38. Lin C-L, Moeng CH, Sullivan PP, McWilliams JC (1997) The effect of surface roughness on flow structures in a neutrally stratified planetary boundary layer. Phys Fluids 9: 3235–3249CrossRefGoogle Scholar
  39. Lyons WA, Olsson LE (1973) Detailed mesometeorological studies of air pollution dispersion in the Chicago lake breeze. Mon Weather Rev 101: 387–403CrossRefGoogle Scholar
  40. Lyons WA, Pielke RA, Tremback CJ, Walko RL, Moon DA, Keen CS (1995) Modeling impacts of mesoscale vertical motions upon coastal zone air pollution dispersion. Atmos Environ 29: 283–301CrossRefGoogle Scholar
  41. Mayor SD (2010) Horizontal motion vectors from cross-correlation: first application to eye-safe aerosol lidar data from CHATS. In: Proceedings of the 25th international laser radar conference, St. Petersburg, Russia, 5–9 July 2010, pp 317–320Google Scholar
  42. Mayor SD (2011) Observations of seven density current fronts in Dixon, California. Mon Weather Rev 139: 1338–1351CrossRefGoogle Scholar
  43. Mayor SD, Dérian P, Héas P, Mémin E (2010) Two-component horizontal motion vectors from eye-safe aerosol lidar. In: 19th symposium on boundary layers and turbulence, Keystone, CO, 2–6 Aug 2010Google Scholar
  44. Miller STK, Keim BD, Talbot RW, Mao H (2003) Sea breeze: structure, forecasting, and impacts. Rev Geophys 41(3): 1011. doi: 10.1029/2003RG000124 CrossRefGoogle Scholar
  45. Mitsumoto S, Ueda H, Ozoe H (1983) A laboratory experiment on the dynamics of the land and sea breeze. J Atmos Sci 40: 1228–1240CrossRefGoogle Scholar
  46. Münkel C, Eresmaa N, Räsänen J., Karppinen A (2007) Retrieval of mixing height and dust concentration with lidar ceilometer. Boundary-Layer Meteorol 124: 117–128CrossRefGoogle Scholar
  47. Nakane H, Sasano Y (1986) Structure of a sea-breeze front revealed by scanning lidar observation. J Meteorol Soc Jpn 64:787–792Google Scholar
  48. Newsom RK, Calhoun R, Ligon D, Allwine J (2008) Linearly organized turbulence structures observed over a suburban area by dual-Doppler lidar. Boundary-Layer Meteorol 127: 111–130CrossRefGoogle Scholar
  49. Ogawa S, Sha W, Iwasaki T, Wang Z (2003) A numerical study on the interaction of a sea-breeze front with convective cells in the daytime boundary layer. J Meteorol Soc Jpn 81: 635–651CrossRefGoogle Scholar
  50. Ohno H, Suzuki O (1993) Small-scale high wind cores enhancing low-level wind shear: Doppler radar observation of opposing wind adjacent to the sea-breeze frontal zone on 20 September 1989. Meteorol Atmos Phys 81: 635–651Google Scholar
  51. Parrish DD, Allen DT, Bates TS, Estes M, Fehsenfeld FC, Feingold G, Ferrare R, Hardesty RM, Meagher JF, Nielsen-Gammon JW, Pierce RB, Ryerson TB, Seinfeld JH, Williams EJ (2009) Overview of the Second Texas Air Quality Study (TexAQS II) and the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). J Geophys Res 114: D00F13. doi: 10.1029/2009JD011842 CrossRefGoogle Scholar
  52. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical recipes in C. Cambridge University Press, New York, 317 ppGoogle Scholar
  53. Reible DD, Simpson JE, Linden PF (1993) The sea breeze and gravity-current frontogenesis. Q J Roy Meteorol Soc 119: 1–16CrossRefGoogle Scholar
  54. Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34: 1001–1027CrossRefGoogle Scholar
  55. Sha W, Kawamura T, Ueda H (1991) A numerical study on sea/land breezes as a gravity current: Kelvin-Helmholtz billows and inland penetration of the sea-breeze front. J Atmos Sci 48: 1649–1665CrossRefGoogle Scholar
  56. Sha W, Kawamura T, Ueda H (1993) A numerical study of nocturnal sea/land breezes: prefrontal gravity waves in the compensating flow and inland penetration of the sea-breeze cutoff vortex. J Atmos Sci 50: 1076–1088CrossRefGoogle Scholar
  57. Simpson JE (1969) A comparison between laboratory and atmospheric density currents. Q J Roy Meteorol Soc 95:758–765CrossRefGoogle Scholar
  58. Simpson JE (1994) Sea breeze and local wind. Cambridge University Press, New York, 234 ppGoogle Scholar
  59. Simpson JE, Britter RE (1980) A laboratory model of an atmospheric mesofront. Q J Roy Meteorol Soc 106: 485–500CrossRefGoogle Scholar
  60. Simpson JE, Mansfield DA, Milford JR (1977) Inland penetration of sea breeze fronts. Q J Roy Meteorol Soc 103: 47–76CrossRefGoogle Scholar
  61. Srivastava V, Jarzembski MA, Bowdle DA (1992) Comparison of calculated aerosol backscatter at 9.1- and 2.1-μm wavelengths. Appl Opt 31: 1904–1906CrossRefGoogle Scholar
  62. Stephan K, Kraus H, Ewenz CM, Hacker JM (1999) Sea-breeze front variations in space and time. Meteorol Atmos Phys 70: 81–95CrossRefGoogle Scholar
  63. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 ppGoogle Scholar
  64. Thompson WT, Holt T, Pullen J (2007) Investigation of a sea breeze front in an urban environment. Q J Roy Meteorol Soc 133: 579–594CrossRefGoogle Scholar
  65. Tsunematsu N, Iwai H, Ishii S, Murayama Y, Yasui M, Mizutani K (2009) The formation of sharp multi-layered wind structure over Tokyo associated with sea-breeze circulation. SOLA 5: 1–4CrossRefGoogle Scholar
  66. Tucker SC, Banta RM, Langford AO, Senff CJ, Brewer WA, Williams EJ, Lerner BM, Osthoff H, Hardesty RM (2010) Relationships of coastal nocturnal boundary layer winds and turbulence to Houston ozone concentrations during TexAQS 2006. J Geophys Res 115: D10304. doi: 10.1029/2009JD013169 CrossRefGoogle Scholar
  67. Ueda H, Mitsumoto S, Kurita H (1988) Flow mechanism for the long-range transport of air pollutants by the sea breeze causing inland nighttime high oxidants. J Appl Meteorol 27: 182–187CrossRefGoogle Scholar
  68. Vaisala (1999) Ceilometer CT25K user’s guide. CT25K-U059en-2.1, HelsinkiGoogle Scholar
  69. Wakimoto RM (1982) The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon Weather Rev 110: 1060–1082CrossRefGoogle Scholar
  70. Wakimoto RM, Atkins NT (1994) Observations of the sea-breeze front during CaPE, Part I: Single-Doppler, satellite, and cloud photogrammetry analysis. Mon Weather Rev 122: 1092–1114CrossRefGoogle Scholar
  71. Wallington CE (1959) The structure of the sea breeze front as revealed by gliding flights. Weather 14: 263–270Google Scholar
  72. Wood R, Storomberg IM, Jonas PR (1999) Aircraft observation of sea-breeze frontal structure. Q J Roy Meteorol Soc 125: 1959–1995CrossRefGoogle Scholar
  73. Xu Q (1992) Density currents in shear flows—a two-fluid model. J Atmos Sci 49: 511–524CrossRefGoogle Scholar
  74. Yasui M, Zhou J, Liu L, Itabe T, Mizutani K, Aoki T (2005) Vertical profiles of aeolian dust in a desert atmosphere observed using lidar in Shapotou, China. J Meteorol Soc Jpn 83: 149–171CrossRefGoogle Scholar
  75. Yoshikado H (1990) Vertical structure of the sea breeze penetrating through a large urban complex. J Appl Meteorol 29: 878–891CrossRefGoogle Scholar
  76. Yoshikado H, Kondo H (1989) Inland penetration of the sea breeze over the suburban area of Tokyo. Boundary-Layer Meteorol 48: 389–407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hironori Iwai
    • 1
    • 2
  • Yasuhiro Murayama
    • 1
  • Shoken Ishii
    • 1
  • Kohei Mizutani
    • 1
  • Yuichi Ohno
    • 1
  • Taichiro Hashiguchi
    • 3
    • 4
  1. 1.National Institute of Information and Communications TechnologyTokyoJapan
  2. 2.Okinawa Electromagnetic Technology CenterKunigamiJapan
  3. 3.Tokyo Metropolitan UniversityTokyoJapan
  4. 4.Remote Sensing Technology Center of JapanTsukubaJapan

Personalised recommendations