Boundary-Layer Meteorology

, Volume 138, Issue 2, pp 231–262 | Cite as

Atmospheric Stability Effects on Wind Fields and Scalar Mixing Within and Just Above a Subalpine Forest in Sloping Terrain

  • Sean P. Burns
  • Jielun Sun
  • Donald H. Lenschow
  • Steven P. Oncley
  • Britton B. Stephens
  • Chuixiang Yi
  • Dean E. Anderson
  • Jia Hu
  • Russell K. Monson
Open Access


Air temperature T a , specific humidity q, CO2 mole fraction χ c , and three-dimensional winds were measured in mountainous terrain from five tall towers within a 1 km region encompassing a wide range of canopy densities. The measurements were sorted by a bulk Richardson number Ri b . For stable conditions, we found vertical scalar differences developed over a “transition” region between 0.05 < Ri b < 0.5. For strongly stable conditions (Ri b > 1), the vertical scalar differences reached a maximum and remained fairly constant with increasing stability. The relationships q and χ c have with Ri b are explained by considering their sources and sinks. For winds, the strong momentum absorption in the upper canopy allows the canopy sublayer to be influenced by pressure gradient forces and terrain effects that lead to complex subcanopy flow patterns. At the dense-canopy sites, soil respiration coupled with wind-sheltering resulted in CO2 near the ground being 5–7 μmol mol−1 larger than aloft, even with strong above-canopy winds (near-neutral conditions). We found Ri b -binning to be a useful tool for evaluating vertical scalar mixing; however, additional information (e.g., pressure gradients, detailed vegetation/topography, etc.) is needed to fully explain the subcanopy wind patterns. Implications of our results for CO2 advection over heterogenous, complex terrain are discussed.


Canopy-layer turbulence Carbon in the Mountains Experiment (CME04) Complex terrain Richardson number Scalar mixing Wind fields 


  1. Acevedo OC, da Silva R, Fitzjarrald DR, Moraes OLL, Sakai RK, Czikowsky MJ (2008) Nocturnal vertical CO2 accumulation in two Amazonian ecosystems. J Geophys Res 113: G00B04. doi: 10.1029/2007JG000612 CrossRefGoogle Scholar
  2. Aubinet M (2008) Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem. Ecol Appl 18: 1368–1378CrossRefGoogle Scholar
  3. Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Boundary-Layer Meteorol 108: 397–417CrossRefGoogle Scholar
  4. Bakwin PS, Tans PP, Zhao C, Ussler W, Quesnell E (1995) Measurements of carbon-dioxide on a very tall tower. Tellus 47: 535–549CrossRefGoogle Scholar
  5. Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere–atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69(5): 1331–1340CrossRefGoogle Scholar
  6. Banta RM, Darby LS, Fast JD, Pinto JO, Whiteman CD, Shaw WJ, Orr BW (2004) Nocturnal low-level jet in a mountain basin complex. Part I: evolution and effects on local flows. J Appl Meteorol 43: 1348–1365CrossRefGoogle Scholar
  7. Barry RG (2008) Mountain weather and climate, 3rd edn. Cambridge University Press, Cambridge, UK, p 512Google Scholar
  8. Belcher SE, Finnigan JJ, Harman IN (2008) Flows through forest canopies in complex terrain. Ecol Appl 18: 1436–1453CrossRefGoogle Scholar
  9. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320: 1444–1449CrossRefGoogle Scholar
  10. Bowling DR, Miller JB, Rhodes ME, Burns SP, Monson RK, Baer D (2009) Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance. Biogeoscience 6(7): 1311–1324CrossRefGoogle Scholar
  11. Brazel AJ, Brazel SW (1983) Summer diurnal wind patterns at 3,000 m surface level, Front Range, Colorado, USA. Phys Geogr 4: 53–61Google Scholar
  12. Brunet Y, Finnigan JJ, Raupach MR (1994) A wind tunnel study of air flow in waving wheat: single point velocity measurements. Boundary-Layer Meteorol 70: 95–132CrossRefGoogle Scholar
  13. Burns SP, Delany AC, Sun J, Stephens B, Oncley S, Maclean GD, Semmer SR, Schröter J, Ruppert J (2009) An evaluation of calibration techniques for in situ carbon dioxide measurements using a programmable portable trace-gas measuring system. J Atmos Ocean Technol 26: 291–316. doi: 10.1175/2008JTECHA1080.1 CrossRefGoogle Scholar
  14. Businger JA (1973) Turbulent transfer in the atmospheric surface layer. In: Haugen DA (eds) Workshop on micrometeorology. Amer Meteorol Soc, Boston, pp 67–100Google Scholar
  15. Fedorovich E, Shapiro A (2009) Structure of numerically simulated katabatic and anabatic flows along steep slopes. Acta Geophys 57: 981–1010CrossRefGoogle Scholar
  16. Feigenwinter C, Bernhofer C, Eichelmann U, Heinesch B, Hertel M, Janous D, Kolle O, Lagergren F, Lindroth A, Minerbi S, Moderow U, Molder M, Montagnani L, Queck R, Rebmann C, Vestin P, Yernaux M, Zeri M, Ziegler W, Aubinet M (2008) Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agric For Meteorol 148: 12–24CrossRefGoogle Scholar
  17. Feigenwinter C, Montagnani L, Aubinet M (2010) Plot-scale vertical and horizontal transport of CO2 modified by a persistent slope wind system in and above an alpine forest. Agric For Meteorol 150: 665–673. doi: 10.1016/j.agrformet.2009.05.009 CrossRefGoogle Scholar
  18. Finnigan JJ (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32: 519–571CrossRefGoogle Scholar
  19. Finnigan JJ (2004) A re-evaluation of long-term flux measurement techniques. Part II: coordinate systems. Boundary-Layer Meteorol 113: 1–41CrossRefGoogle Scholar
  20. Finnigan J (2008) An introduction to flux measurements in difficult conditions. Ecol Appl 18: 1340–1350CrossRefGoogle Scholar
  21. Finnigan JJ, Belcher SE (2004) Flow over a hill covered with a plant canopy. Q J Roy Meteorol Soc 130: 1–29CrossRefGoogle Scholar
  22. Finnigan JJ, Brunet Y (1995) Turbulent airflow in forests on flat and hilly terrain. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 3–40CrossRefGoogle Scholar
  23. Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques. Part I: averaging and coordinate rotation. Boundary-Layer Meteorol 107: 1–48CrossRefGoogle Scholar
  24. Froelich NJ, Schmid HP (2006) Flow divergence and density flows above and below a deciduous forest. Part II: below-canopy thermotopographic flows. Agric For Meteorol 138: 29–43CrossRefGoogle Scholar
  25. Galperin B, Sukoriansky S, Anderson PS (2007) On the critical Richardson number in stably stratified turbulence. Atmos Sci Let 8: 65–69CrossRefGoogle Scholar
  26. Harman IN, Finnigan JJ (2007) A simple unified theory for flow in the canopy and roughness sublayer. Boundary-Layer Meteorol 123: 339–363CrossRefGoogle Scholar
  27. Harman IN, Finnigan JJ (2008) Scalar concentration profiles in the canopy and roughness sublayer. Boundary-Layer Meteorol 129: 323–351CrossRefGoogle Scholar
  28. Hirano T, Kim H, Tanaka Y (2003) Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest. J Geophys Res 108(D20): 4631. doi: 10.1029/2003JD003766 CrossRefGoogle Scholar
  29. Horst TW, Doran JC (1986) Nocturnal drainage flow on simple slopes. Boundary-Layer Meteorol 34: 263–286CrossRefGoogle Scholar
  30. Inoue E (1963) On the turbulent structure of airflow within crop canopies. J Meteorol Soc Jpn 41: 317–326Google Scholar
  31. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, p 289Google Scholar
  32. Katul GG, Finnigan JJ, Poggi D, Leuning R, Belcher SE (2006) The influence of hilly terrain on canopy-atmosphere carbon dioxide exchange. Boundary-Layer Meteorol 118: 189–216CrossRefGoogle Scholar
  33. Komatsu H, Hotta N, Kuraji K, Suzuki M, Oki T (2005) Classification of vertical wind speed profiles observed above a sloping forest at nighttime using the bulk Richardson number. Boundary-Layer Meteorol 115: 205–221CrossRefGoogle Scholar
  34. Komatsu H, Hotta N, Kuraji K, Suzuki M (2008) Relationship between nighttime wind speeds and thermal conditions above a sloping forest. J Meteorol Soc Jpn 86: 805–815CrossRefGoogle Scholar
  35. Kossmann M, Fiedler F (2000) Diurnal momentum budget analysis of thermally induced slope winds. Meteorol Atmos Phys 75: 195–215CrossRefGoogle Scholar
  36. Lee X (2000) Air motion within and above forest vegetation in non-ideal conditions. For Ecol Manag 135: 3–18CrossRefGoogle Scholar
  37. Leuning R, Zegelin SJ, Jones K, Keith H, Hughes D (2008) Measurement of horizontal and vertical advection of CO2 within a forest canopy. Agric For Meteorol 148: 1777–1797CrossRefGoogle Scholar
  38. Mahrt L (1982) Momentum balance of gravity flows. J Atmos Sci 39: 2701–2711CrossRefGoogle Scholar
  39. Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90: 375–396CrossRefGoogle Scholar
  40. Mahrt L (2010) Computing turbulent fluxes near the surface: needed improvements. Agric For Meteorol 150: 501–509CrossRefGoogle Scholar
  41. Massman WJ (1997) An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure. Boundary-Layer Meteorol 83: 407–421CrossRefGoogle Scholar
  42. Mauritsen T, Svensson G (2007) Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. J Atmos Sci 64: 645–655CrossRefGoogle Scholar
  43. Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott-Denton LE, Sparks K, Huxman TE (2002) Carbon sequestration in a high-elevation, subalpine forest. Glob Change Biol 8: 459–478CrossRefGoogle Scholar
  44. Monson RK, Prater MR, Hu J, Burns SP, Sparks JP, Sparks KL, Scott-Denton LE (2010) Tree species effects on ecosystem water-use efficiency in a high-elevation, subalpine forest. Oecologia 162(2): 491–504. doi: 10.1007/s00442-009-1465-z CrossRefGoogle Scholar
  45. Monti P, Fernando HJS, Princevac M, Chan WC, Kowalewski TA, Pardyjak ER (2002) Observations of flow and turbulence in the nocturnal boundary layer over a slope. J Atmos Sci 59: 2513–2534CrossRefGoogle Scholar
  46. Moore DJP, Hu J, Sacks WJ, Schimel DS, Monson RK (2008) Estimating transpiration and the sensitivity of carbon uptake to water availability in a subalpine forest using a simple ecosystem process model informed by measured net CO2 and H2O fluxes. Agric For Meteorol 148: 1467–1477CrossRefGoogle Scholar
  47. Nakamura R, Mahrt L (2001) Similarity theory for local and spatially averaged momentum fluxes. Agric For Meteorol 108: 265–279CrossRefGoogle Scholar
  48. Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary-layer. J Atmos Sci 41: 2202–2216CrossRefGoogle Scholar
  49. Ohkubo S, Kosugi Y, Takanashi S, Matsuo N, Tani M, Nik AR (2008) Vertical profiles and storage fluxes of CO2, heat and water in a tropical rainforest at Pasoh, Peninsular Malaysia. Tellus 60: 569–582Google Scholar
  50. Oncley SP (2004) CME04 report. NCAR Earth Observing Laboratory (EOL) Integrated Surface Flux Facility (ISFF).
  51. Oncley SP, Schwenz K, Burns SP, Sun J, Monson RK (2009) A cable-borne tram for atmospheric measurements along transects. J Atmos Ocean Technol 26(3): 462–473. doi: 10.1175/2008JTECHA1158.1 CrossRefGoogle Scholar
  52. Patton EG, Katul GG (2009) Turbulent pressure and velocity perturbations induced by gentle hills covered with sparse and dense canopies. Boundary-Layer Meteorol 133: 189–217CrossRefGoogle Scholar
  53. Pérez I, Sánchez M, García M, de Torre B (2009) Daily and annual cycle of CO2 concentration near the surface depending on boundary layer structure at a rural site in Spain. Theor Appl Climatol 98: 269–277. doi: 10.1007/s00704-009-0112-2 CrossRefGoogle Scholar
  54. Physick WL, Garratt JR (1995) Incorporation of a high-roughness lower boundary into a mesoscale model for studies of dry deposition over complex terrain. Boundary-Layer Meteorol 74: 55–71CrossRefGoogle Scholar
  55. Poggi D, Katul GG (2007) Turbulent flows on forested hilly terrain: the recirculation region. Q J Roy Meteorol Soc 133: 1027–1039CrossRefGoogle Scholar
  56. Poggi D, Katul GG, Albertson JD (2004a) A note on the contribution of dispersive fluxes to momentum transfer within canopies—research note. Boundary-Layer Meteorol 111: 615–621CrossRefGoogle Scholar
  57. Poggi D, Porporato A, Ridolfi L, Albertson JD, Katul GG (2004b) The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol 111: 565–587CrossRefGoogle Scholar
  58. Poggi D, Katul GG, Finnigan JJ, Belcher SE (2008) Analytical models for the mean flow inside dense canopies on gentle hilly terrain. Q J Roy Meteorol Soc 134: 1095–1112CrossRefGoogle Scholar
  59. Poulos GS, Burns SP (2003) An evaluation of bulk Ri-based surface layer flux formulas for stable and very stable conditions with intermittent turbulence. J Atmos Sci 60: 2523–2537. doi: 10.1175/1520-0469(2003)060<2523:AEOBRS>2.0.CO;2 CrossRefGoogle Scholar
  60. Raupach MR (1987) A Lagrangian analysis of scalar transfer in vegetation canopies. Q J Roy Meteorol Soc 113: 107–120CrossRefGoogle Scholar
  61. Raupach MR, Thom AS (1981) Turbulence in and above plant canopies. Annu Rev Fluid Mech 13: 97–129CrossRefGoogle Scholar
  62. Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78: 351–382CrossRefGoogle Scholar
  63. Richardson LF (1925) Turbulence and vertical temperature differences near trees. Philos Mag 49: 81–90Google Scholar
  64. Ryan MG, Law B (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73: 3–27CrossRefGoogle Scholar
  65. Schaeffer SM, Anderson DE, Burns SP, Monson RK, Sun J, Bowling DR (2008) Canopy structure and atmospheric flows in relation to the δ13C of respired CO2 in a subalpine coniferous forest. Agric For Meteorol 148: 592–605. doi: 10.1016/j.agrformet.2007.11.003 CrossRefGoogle Scholar
  66. Scott-Denton LE, Sparks KL, Monson RK (2003) Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biol Biochem 35: 525–534CrossRefGoogle Scholar
  67. Sedlak P, Aubinet M, Heinesch B, Janous D, Pavelka M, Potuznikova K, Yernaux M (2010) Night-time airflow in a forest canopy near a mountain crest. Agric For Meteorol 150: 736–744CrossRefGoogle Scholar
  68. Siqueira MB, Katul GG (2010) An analytical model for the distribution of CO2 sources and sinks, fluxes, and mean concentration within the roughness sub-layer. Boundary-Layer Meteorol 135: 31–50. doi: 10.1007/s10546-009-9453-8 CrossRefGoogle Scholar
  69. Smith RB (1979) The influence of mountains on the atmosphere. Adv Geophys 21: 87–230CrossRefGoogle Scholar
  70. Staebler RM, Fitzjarrald DR (2004) Observing subcanopy CO2 advection. Agric For Meteorol 122: 139–156. doi: 10.1016/j.agrformet.2003.09.011 CrossRefGoogle Scholar
  71. Staebler RM, Fitzjarrald DR (2005) Measuring canopy structure and the kinematics of subcanopy flows in two forests. J Appl Meteorol 44: 1161–1179CrossRefGoogle Scholar
  72. Stephens BB, Watt A, Maclean G (2006) An autonomous inexpensive robust CO2 analyzer (AIRCOA). In: Miller J (ed) 13th WMO/IAEA meeting of experts on carbon dioxide concentration and related tracers measurement techniques. World Meteorological Organization, Global Atmosphere Watch Programme, Geneva, Switzerland, WMO tech. doc. no. 1359; GAW report no. 168, pp 95–99.
  73. Su HB, Schmid H, Vogel C, Curtis P (2008) Effects of canopy morphology and thermal stability on mean flow and turbulence statistics observed inside a mixed hardwood forest. Agric For Meteorol 148: 862–882. doi: 10.1016/j.agrformet.2007.12.002 CrossRefGoogle Scholar
  74. Sun J (2007) Tilt corrections over complex terrain and their implication for CO2 transport. Boundary-Layer Meteorol 124: 143–159CrossRefGoogle Scholar
  75. Sun J, Burns SP, Delany AC, Oncley SP, Turnipseed AA, Stephens BB, Lenschow DH, LeMone MA, Monson RK, Anderson DE (2007) CO2 transport over complex terrain. Agric For Meteorol 145: 1–21. doi: 10.1016/j.agrformet.2007.02.007 CrossRefGoogle Scholar
  76. Sun J, Oncley SP, Burns SP, Stephens BB, Lenschow DH, Campos T, Monson RK, Schimel DS, Sacks WJ, De Wekker SFJ, Lai CT, Lamb B, Ojima D, Ellsworth PZ, Sternberg LSL, Zhong S, Clements C, Moore DJP, Anderson DE, Watt AS, Hu J, Tschudi M, Aulenbach S, Allwine E, Coons T (2010) A multiscale and multidisciplinary investigation of ecosystem-atmosphere CO2 exchange over the Rocky Mountains of Colorado. Bull Am Meteorol Soc 91(2): 209–230. doi: 10.1175/2009BAMS2733.1 CrossRefGoogle Scholar
  77. Sutton OG (1953) Micrometeorology : a study of physical processes in the lowest layers of the Earth’s atmosphere. McGraw-Hill, New York, p 333Google Scholar
  78. Turnipseed AA, Blanken PD, Anderson DE, Monson RK (2002) Energy budget above a high-elevation subalpine forest in complex topography. Agric For Meteorol 110: 177–201CrossRefGoogle Scholar
  79. Turnipseed AA, Anderson DE, Blanken PD, Baugh WM, Monson RK (2003) Airflows and turbulent flux measurements in mountainous terrain. Part 1: canopy and local effects. Agric For Meteorol 119: 1–21CrossRefGoogle Scholar
  80. Turnipseed AA, Anderson DE, Burns S, Blanken PD, Monson RK (2004) Airflows and turbulent flux measurements in mountainous terrain. Part 2: mesoscale effects. Agric For Meteorol 125: 187–205CrossRefGoogle Scholar
  81. Vickers D, Mahrt L (2006) A solution for flux contamination by mesoscale motions with very weak turbulence. Boundary-Layer Meteorol 118: 431–447CrossRefGoogle Scholar
  82. Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, New York, p 355Google Scholar
  83. Whiteman CD, Zhong SY (2008) Downslope flows on a low-angle slope and their interactions with valley inversions. Part I: observations. J Appl Meteorol Clim 47: 2023–2038CrossRefGoogle Scholar
  84. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99: 127–150CrossRefGoogle Scholar
  85. Yi C (2008) Momentum transfer within canopies. J Appl Meteorol Clim 47: 262–275CrossRefGoogle Scholar
  86. Yi C, Davis KJ, Berger BW, Bakwin PS (2001) Long-term observations of the dynamics of the continental planetary boundary layer. J Atmos Sci 58: 1288–1299CrossRefGoogle Scholar
  87. Yi C, Monson RK, Zhai ZQ, Anderson DE, Lamb B, Allwine G, Turnipseed AA, Burns SP (2005) Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain. J Geophys Res 110: D22,303. doi: 10.1029/2005JD006282 CrossRefGoogle Scholar
  88. Yi C, Anderson DE, Turnipseed AA, Burns SP, Sparks JP, Stannard DI, Monson RK (2008) The contribution of advective fluxes to net ecosystem exchange in a high-elevation, subalpine forest. Ecol Appl 18: 1379–1390. doi: 10.1890/06-0908.1 CrossRefGoogle Scholar
  89. Zilitinkevich SS, Elperin T, Kleeorin N, Rogachevskii I (2007) Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: steady-state, homogeneous regimes. Boundary-Layer Meteorol 125: 167–191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sean P. Burns
    • 1
    • 4
  • Jielun Sun
    • 1
  • Donald H. Lenschow
    • 1
  • Steven P. Oncley
    • 1
  • Britton B. Stephens
    • 1
  • Chuixiang Yi
    • 2
  • Dean E. Anderson
    • 3
  • Jia Hu
    • 4
  • Russell K. Monson
    • 4
  1. 1.National Center for Atmospheric ResearchBoulderUSA
  2. 2.School of Earth and Environmental SciencesQueens CollegeFlushingUSA
  3. 3.U.S. Geological SurveyDenverUSA
  4. 4.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations