Advertisement

Boundary-Layer Meteorology

, Volume 135, Issue 3, pp 407–432 | Cite as

Comparison of Boundary-Layer Profiles and Layer Detection by AMDAR and WTR/RASS at Frankfurt Airport

  • Clemens Drüe
  • Thomas Hauf
  • Axel Hoff
Article

Abstract

At Frankfurt airport (EDDF) vertical soundings of the lower atmosphere from two independent sources are available. One of them is a wind and temperature profiler (wind temperature radar and radio acoustic sounding system, WTR/RASS) located at the western end of the main pair of runways. The second source is aircraft meteorological data relay (AMDAR), i.e. measurements operationally collected by approaching and departing aircraft. Together, both offer a rare opportunity to compare the performance of these widely used systems. We use 1 year of continuous data to calculate systematic temperature and wind vector differences between both measurement systems. The differences show a clear season-dependent structure in conjunction with typical inversion heights. Possible causes for this behaviour are discussed. Second, we compare the ability of both systems to identify inversion and wind-shear layers above the airport. AMDAR-detected layers are typically higher than wind profiler detections. The layer base is usually detected with more agreement than the top. The mutual probability of detection of inversions is found to be mostly between 40 and 60%.

Keywords

Airport terminal area Aircraft meteorological data relay (AMDAR) Inversion detection Wind profiler 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballish BA, Kumar VK (2008) Systematic differences in aircraft and radiosonde temperatures. Bull Am Meteorol Soc 89(11): 1689–1707. doi: 10.1175/2008BAMS2332.1 CrossRefGoogle Scholar
  2. Baumann-Stanzer K (2004) The UHF wind profiler at Vienna airport—data quality control and comparisons to rawinsonde data. Meteorol Atmos Phys 85(1–3): 165–174. doi: 10.1007/s00703-003-0043-x Google Scholar
  3. Beaudette DC (1988) Pilot windshear guide. Technical report AC no. 00-54, United States Department of Transportation, Washington, 64 ppGoogle Scholar
  4. Benjamin SG, Schwartz BE, Cole RE (1999) Accuracy of ACARS wind and temperature observations determined by collocation. Weather Forecast 14(6): 1032–1038. doi: 10.1175/1520-0434(1999)014<1032:AOAWAT>2.0.CO;2 CrossRefGoogle Scholar
  5. Blackadar AK (1957) Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Am Meteorol Soc 38: 283–290Google Scholar
  6. Bonner WD (1968) Climatology of the low level jet. Mon Weather Rev 96(12): 833–850. doi: 10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2 CrossRefGoogle Scholar
  7. Bouttier F (2001) The use of profiler data at ECMWF. Meteorol Z 10(6): 497–510. doi: 10.1127/0941-2948/2001/0010-0497 CrossRefGoogle Scholar
  8. Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J Appl Meteorol 20(12): 1527–1532. doi: 10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2 CrossRefGoogle Scholar
  9. CAA (2009) Radiotelephony manual, 18th edn. CAP 413, The Stationery Office, Norwich, 198 ppGoogle Scholar
  10. Chan PW, Shao AM (2007) Depiction of complex airflow near Hong Kong international airport using a doppler LIDAR with a two-dimensional wind retrieval technique. Meteorol Z 16(5): 491–504. doi: 10.1127/0941-2948/2007/0220 CrossRefGoogle Scholar
  11. DFS (2009) Luftfahrthandbuch Deutschland. DFS Deutsche Flugsicherung, Offenbach (Main)Google Scholar
  12. Drosg M (2009) Dealing with uncertainties. Springer, Berlin, p 235CrossRefGoogle Scholar
  13. Drüe C, Heinemann G (2001) Airborne investigation of arctic boundary-layer fronts over the marginal ice zone of the Davis strait. Boundary-Layer Meteorol 101: 261–292. doi: 10.1023/A:1019223513815 CrossRefGoogle Scholar
  14. Drüe C, Hauf T, Finke U, Keyn S, Kreyer O (2007) Comparison of a safir lightning detection network in northern Germany to the operational BLIDS network. J Geophys Res 112: D18114. doi: 10.1029/2006JD007680 CrossRefGoogle Scholar
  15. Drüe C, Frey W, Hoff A, Hauf T (2008) Aircraft type-specific errors in AMDAR weather reports from commercial aircraft. Q J Roy Meteorol Soc 134(630): 229–239. doi: 10.1002/qj.205 CrossRefGoogle Scholar
  16. Emeis S, Münkel C, Vogt S, Müller WJ, Schäfer K (2004) Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements. Atmos Environ 38(2): 273–286. doi: 10.1016/j.atmosenv.2003.09.054 CrossRefGoogle Scholar
  17. FAA (2009) Order JO 7110.10, Flight Services, Federal Aviation Administration, chap Pilot/Controller Glossary (P/CG), pp PCG1–PCG117Google Scholar
  18. Frech M, Holzäpfel F, Tafferner A, Gerz T (2007) High-resolution weather database for the terminal area of Frankfurt airport. J Appl Meteorol Climatol 46(11): 1913–1932. doi: 10.1175/2007JAMC1513.1 CrossRefGoogle Scholar
  19. Grooters F, Berechree M (2009) Amdar implementation. In: Eleventh meeting of the AMDAR panel, 19–21 Nov 2008, Pealing Jaya, Malaysia, Doc. 3.1(1), 46 ppGoogle Scholar
  20. Heinemann G (2002) Aircraft-based measurements of turbulence structures in the katabatic flow over greenland. Boundary-Layer Meteorol 103: 49–81. doi: 10.1023/A:1014537229865 CrossRefGoogle Scholar
  21. Helms D, Johnston KL, Sanger G, Taubvurtzel B, Petersen RA, Homans A, Hoff A (2009) Testing and deployment of the water vapor sensing system II. In: 25th conference on international interactive information and processing systems (IIPS) for meteorology, oceanography, and hydrology, 89th American Meteorological Society annual meeting, 10–16 Jan 2009, Phoenix, AZGoogle Scholar
  22. Hoke JE (2007) Terminal aerodrome forecasts. National weather service instruction 10-813. United States National Weather Service, Silver Spring, MD, 59 ppGoogle Scholar
  23. Holzäpfel F (2005) Probabilistic tow-phase aircraft wake-vortex model: further development and assessment. DLR-IAP report, vol 207. Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, pp 1–25Google Scholar
  24. Holzäpfel F, Steen M (2007) Aircraft wake-vortex evolution in ground proximity: analysis and parameterization. AIAA J 45: 218–227. doi: 10.2514/1.23917 CrossRefGoogle Scholar
  25. Huber J (2003) Noise propagation model for the design of weather specific noise abatement procedures. PhD thesis, Technology. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 107 ppGoogle Scholar
  26. Ishii S, Mizutani K, Aoki T, Sasano M, Murayama Y, Itabe T, Asai K (2005) Wind profiling with an eye-safe coherent doppler lidar system: comparison with radiosondes and VHF radar. J Meteorol Soc Jpn 83(6): 1041–1056. doi: 10.2151/jmsj.83.1041 CrossRefGoogle Scholar
  27. Kaplan ML, Lin YL, Charney JJ, Pfeiffer KD, Ensley DB, DeCroix DS, Weglarz RP (2000) A terminal area PBL prediction system at Dallas-Fort Worth and its application in simulating diurnal PBL jets. Bull Am Meteorol Soc 81(9): 2179–2204. doi: 10.1175/1520-0477(2000)081<2179:ATAPPS>2.3.CO;2 CrossRefGoogle Scholar
  28. Keder J (1999) Detection of inversions and mixing height by REMTECH PA2 sodar in comparison with collocated radiosonde measurements. Meteorol Atmos Phys 71(1): 133–138. doi: 10.1007/s007030050051 CrossRefGoogle Scholar
  29. Kessler E (1990) Low-level windshear alert systems and doppler radar in aircraft terminal operations. J Aircr 27(5): 423–428CrossRefGoogle Scholar
  30. Konopka J, Fischer H (2005) The wake vortex warning system at Frankfurt airport. In: The 24th digital avionics systems conference, 2005. DASC 2005. doi: 10.1109/DASC.2005.1563340
  31. Lenschow DH, Pennell WT (1974) On the measurement of in-cloud and wet-bulb temperatures from an aircraft. Mon Weather Rev 102: 447–454. doi: 10.1175/1520-0493(1974)102<0447:OTMOIC>2.0.CO;2 CrossRefGoogle Scholar
  32. Lester P (2001) Aviation weather, 2nd edn. JeppesenSanderson, Englewood, CO, p 460Google Scholar
  33. Lunnon RW, Hauf T, Gerz T, Josse P (2006) Flysafe—meteorological hazard nowcasting, driven by the needs of the pilot. In: 12th conference on aviation range and aerospace meteorology, 28 Jan to 2 Feb 2006, Atlanta, GAGoogle Scholar
  34. Markovic D, Hauf T, Röhner P, Spehr U (2008) A statistical study of the weather impact on punctuality at Frankfurt airport. Meteorol Appl 15(2): 293–303. doi: 10.1002/met.74 CrossRefGoogle Scholar
  35. Moninger WR, Mamrosh RD, Pauley PM (2003) Automated meteorological reports from commercial aircraft. Bull Am Meteorol Soc 84: 203–216. doi: 10.1175/BAMS-84-2-203 CrossRefGoogle Scholar
  36. Painting JD (2003) AMDAR reference manual. Technical report WMO-no 958. World Meteorological Organization, Geneva, p 84Google Scholar
  37. Pastre C (2000) What is new in our programmes?. EUMETNET News 6: 13–15Google Scholar
  38. Piringer M (1998) Summertime mixing heights at Vienna, Austria, estimated from vertical soundings and by a numerical model. Boundary-Layer Meteorol 89(1): 25–45. doi: 10.1023/A:1001565319487 CrossRefGoogle Scholar
  39. Schwartz B, Benjamin SG (1995) A comparison of temperature and wind measurements from ACARS-equipped aircraft and rawinsondes. Weather Forecast 10: 528–544. doi: 10.1175/1520-0434(1995)010<0528:ACOTAW>2.0.CO;2 CrossRefGoogle Scholar
  40. Scintec (2006) Product information: radar wind profilers, temperature profilers. Technical report AP 2006/2. Scintec AG, Rottenburg, 13 ppGoogle Scholar
  41. Stickney TM, Shedlov MW, Thompson DI (1994) Goodrich total temperature sensors. Technical report 5755. Goodrich Corporation, Burnsville, MN, p 32Google Scholar
  42. Strunin MA, Hiyama T (2004) Response properties of atmospheric turbulence measurement instruments using Russian research aircraft. Hydrol Process 18(16): 3099–3117. doi: 10.1002/hyp.5751 CrossRefGoogle Scholar
  43. Stull RB (1988) An introduction to boundary-layer meteorology. Kluwer Academic Publishers, Dordrecht, p 666Google Scholar
  44. Takahashi K, Masuda Y, Matuura N, Kato S, Fukao S, Tsuda T, Sato T (1988) Analysis of acoustic wave fronts in the atmosphere to profile the temperature and wind with a radio acoustic sounding system. J Acoust Soc Am 84(3): 1061–1066. doi: 10.1121/1.396691 CrossRefGoogle Scholar
  45. Vali G, Kelly RD, Pazmany A, McIntosh RE (1995) Airborne radar and in-situ observations of a shallow stratus with drizzle. Atmos Res 38(1–4): 361–380. doi: 10.1016/0169-8095(95)00006-D CrossRefGoogle Scholar
  46. Yeung KK (1998) Use of wind profiler in severe weather monitoring. Meteorol Z 7(6): 326–331Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Universität TrierTrierGermany
  2. 2.Institut für Meteorologie und KlimatologieLeibniz Universität HannoverHannoverGermany
  3. 3.Deutscher WetterdienstOffenbachGermany

Personalised recommendations