Skip to main content
Log in

Comparison of Boundary-Layer Profiles and Layer Detection by AMDAR and WTR/RASS at Frankfurt Airport

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

At Frankfurt airport (EDDF) vertical soundings of the lower atmosphere from two independent sources are available. One of them is a wind and temperature profiler (wind temperature radar and radio acoustic sounding system, WTR/RASS) located at the western end of the main pair of runways. The second source is aircraft meteorological data relay (AMDAR), i.e. measurements operationally collected by approaching and departing aircraft. Together, both offer a rare opportunity to compare the performance of these widely used systems. We use 1 year of continuous data to calculate systematic temperature and wind vector differences between both measurement systems. The differences show a clear season-dependent structure in conjunction with typical inversion heights. Possible causes for this behaviour are discussed. Second, we compare the ability of both systems to identify inversion and wind-shear layers above the airport. AMDAR-detected layers are typically higher than wind profiler detections. The layer base is usually detected with more agreement than the top. The mutual probability of detection of inversions is found to be mostly between 40 and 60%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ballish BA, Kumar VK (2008) Systematic differences in aircraft and radiosonde temperatures. Bull Am Meteorol Soc 89(11): 1689–1707. doi:10.1175/2008BAMS2332.1

    Article  Google Scholar 

  • Baumann-Stanzer K (2004) The UHF wind profiler at Vienna airport—data quality control and comparisons to rawinsonde data. Meteorol Atmos Phys 85(1–3): 165–174. doi:10.1007/s00703-003-0043-x

    Google Scholar 

  • Beaudette DC (1988) Pilot windshear guide. Technical report AC no. 00-54, United States Department of Transportation, Washington, 64 pp

  • Benjamin SG, Schwartz BE, Cole RE (1999) Accuracy of ACARS wind and temperature observations determined by collocation. Weather Forecast 14(6): 1032–1038. doi:10.1175/1520-0434(1999)014<1032:AOAWAT>2.0.CO;2

    Article  Google Scholar 

  • Blackadar AK (1957) Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Am Meteorol Soc 38: 283–290

    Google Scholar 

  • Bonner WD (1968) Climatology of the low level jet. Mon Weather Rev 96(12): 833–850. doi:10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2

    Article  Google Scholar 

  • Bouttier F (2001) The use of profiler data at ECMWF. Meteorol Z 10(6): 497–510. doi:10.1127/0941-2948/2001/0010-0497

    Article  Google Scholar 

  • Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J Appl Meteorol 20(12): 1527–1532. doi:10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2

    Article  Google Scholar 

  • CAA (2009) Radiotelephony manual, 18th edn. CAP 413, The Stationery Office, Norwich, 198 pp

  • Chan PW, Shao AM (2007) Depiction of complex airflow near Hong Kong international airport using a doppler LIDAR with a two-dimensional wind retrieval technique. Meteorol Z 16(5): 491–504. doi:10.1127/0941-2948/2007/0220

    Article  Google Scholar 

  • DFS (2009) Luftfahrthandbuch Deutschland. DFS Deutsche Flugsicherung, Offenbach (Main)

  • Drosg M (2009) Dealing with uncertainties. Springer, Berlin, p 235

    Book  Google Scholar 

  • Drüe C, Heinemann G (2001) Airborne investigation of arctic boundary-layer fronts over the marginal ice zone of the Davis strait. Boundary-Layer Meteorol 101: 261–292. doi:10.1023/A:1019223513815

    Article  Google Scholar 

  • Drüe C, Hauf T, Finke U, Keyn S, Kreyer O (2007) Comparison of a safir lightning detection network in northern Germany to the operational BLIDS network. J Geophys Res 112: D18114. doi:10.1029/2006JD007680

    Article  Google Scholar 

  • Drüe C, Frey W, Hoff A, Hauf T (2008) Aircraft type-specific errors in AMDAR weather reports from commercial aircraft. Q J Roy Meteorol Soc 134(630): 229–239. doi:10.1002/qj.205

    Article  Google Scholar 

  • Emeis S, Münkel C, Vogt S, Müller WJ, Schäfer K (2004) Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements. Atmos Environ 38(2): 273–286. doi:10.1016/j.atmosenv.2003.09.054

    Article  Google Scholar 

  • FAA (2009) Order JO 7110.10, Flight Services, Federal Aviation Administration, chap Pilot/Controller Glossary (P/CG), pp PCG1–PCG117

  • Frech M, Holzäpfel F, Tafferner A, Gerz T (2007) High-resolution weather database for the terminal area of Frankfurt airport. J Appl Meteorol Climatol 46(11): 1913–1932. doi:10.1175/2007JAMC1513.1

    Article  Google Scholar 

  • Grooters F, Berechree M (2009) Amdar implementation. In: Eleventh meeting of the AMDAR panel, 19–21 Nov 2008, Pealing Jaya, Malaysia, Doc. 3.1(1), 46 pp

  • Heinemann G (2002) Aircraft-based measurements of turbulence structures in the katabatic flow over greenland. Boundary-Layer Meteorol 103: 49–81. doi:10.1023/A:1014537229865

    Article  Google Scholar 

  • Helms D, Johnston KL, Sanger G, Taubvurtzel B, Petersen RA, Homans A, Hoff A (2009) Testing and deployment of the water vapor sensing system II. In: 25th conference on international interactive information and processing systems (IIPS) for meteorology, oceanography, and hydrology, 89th American Meteorological Society annual meeting, 10–16 Jan 2009, Phoenix, AZ

  • Hoke JE (2007) Terminal aerodrome forecasts. National weather service instruction 10-813. United States National Weather Service, Silver Spring, MD, 59 pp

  • Holzäpfel F (2005) Probabilistic tow-phase aircraft wake-vortex model: further development and assessment. DLR-IAP report, vol 207. Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, pp 1–25

  • Holzäpfel F, Steen M (2007) Aircraft wake-vortex evolution in ground proximity: analysis and parameterization. AIAA J 45: 218–227. doi:10.2514/1.23917

    Article  Google Scholar 

  • Huber J (2003) Noise propagation model for the design of weather specific noise abatement procedures. PhD thesis, Technology. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 107 pp

  • Ishii S, Mizutani K, Aoki T, Sasano M, Murayama Y, Itabe T, Asai K (2005) Wind profiling with an eye-safe coherent doppler lidar system: comparison with radiosondes and VHF radar. J Meteorol Soc Jpn 83(6): 1041–1056. doi:10.2151/jmsj.83.1041

    Article  Google Scholar 

  • Kaplan ML, Lin YL, Charney JJ, Pfeiffer KD, Ensley DB, DeCroix DS, Weglarz RP (2000) A terminal area PBL prediction system at Dallas-Fort Worth and its application in simulating diurnal PBL jets. Bull Am Meteorol Soc 81(9): 2179–2204. doi:10.1175/1520-0477(2000)081<2179:ATAPPS>2.3.CO;2

    Article  Google Scholar 

  • Keder J (1999) Detection of inversions and mixing height by REMTECH PA2 sodar in comparison with collocated radiosonde measurements. Meteorol Atmos Phys 71(1): 133–138. doi:10.1007/s007030050051

    Article  Google Scholar 

  • Kessler E (1990) Low-level windshear alert systems and doppler radar in aircraft terminal operations. J Aircr 27(5): 423–428

    Article  Google Scholar 

  • Konopka J, Fischer H (2005) The wake vortex warning system at Frankfurt airport. In: The 24th digital avionics systems conference, 2005. DASC 2005. doi:10.1109/DASC.2005.1563340

  • Lenschow DH, Pennell WT (1974) On the measurement of in-cloud and wet-bulb temperatures from an aircraft. Mon Weather Rev 102: 447–454. doi:10.1175/1520-0493(1974)102<0447:OTMOIC>2.0.CO;2

    Article  Google Scholar 

  • Lester P (2001) Aviation weather, 2nd edn. JeppesenSanderson, Englewood, CO, p 460

    Google Scholar 

  • Lunnon RW, Hauf T, Gerz T, Josse P (2006) Flysafe—meteorological hazard nowcasting, driven by the needs of the pilot. In: 12th conference on aviation range and aerospace meteorology, 28 Jan to 2 Feb 2006, Atlanta, GA

  • Markovic D, Hauf T, Röhner P, Spehr U (2008) A statistical study of the weather impact on punctuality at Frankfurt airport. Meteorol Appl 15(2): 293–303. doi:10.1002/met.74

    Article  Google Scholar 

  • Moninger WR, Mamrosh RD, Pauley PM (2003) Automated meteorological reports from commercial aircraft. Bull Am Meteorol Soc 84: 203–216. doi:10.1175/BAMS-84-2-203

    Article  Google Scholar 

  • Painting JD (2003) AMDAR reference manual. Technical report WMO-no 958. World Meteorological Organization, Geneva, p 84

    Google Scholar 

  • Pastre C (2000) What is new in our programmes?. EUMETNET News 6: 13–15

    Google Scholar 

  • Piringer M (1998) Summertime mixing heights at Vienna, Austria, estimated from vertical soundings and by a numerical model. Boundary-Layer Meteorol 89(1): 25–45. doi:10.1023/A:1001565319487

    Article  Google Scholar 

  • Schwartz B, Benjamin SG (1995) A comparison of temperature and wind measurements from ACARS-equipped aircraft and rawinsondes. Weather Forecast 10: 528–544. doi:10.1175/1520-0434(1995)010<0528:ACOTAW>2.0.CO;2

    Article  Google Scholar 

  • Scintec (2006) Product information: radar wind profilers, temperature profilers. Technical report AP 2006/2. Scintec AG, Rottenburg, 13 pp

  • Stickney TM, Shedlov MW, Thompson DI (1994) Goodrich total temperature sensors. Technical report 5755. Goodrich Corporation, Burnsville, MN, p 32

    Google Scholar 

  • Strunin MA, Hiyama T (2004) Response properties of atmospheric turbulence measurement instruments using Russian research aircraft. Hydrol Process 18(16): 3099–3117. doi:10.1002/hyp.5751

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary-layer meteorology. Kluwer Academic Publishers, Dordrecht, p 666

    Google Scholar 

  • Takahashi K, Masuda Y, Matuura N, Kato S, Fukao S, Tsuda T, Sato T (1988) Analysis of acoustic wave fronts in the atmosphere to profile the temperature and wind with a radio acoustic sounding system. J Acoust Soc Am 84(3): 1061–1066. doi:10.1121/1.396691

    Article  Google Scholar 

  • Vali G, Kelly RD, Pazmany A, McIntosh RE (1995) Airborne radar and in-situ observations of a shallow stratus with drizzle. Atmos Res 38(1–4): 361–380. doi:10.1016/0169-8095(95)00006-D

    Article  Google Scholar 

  • Yeung KK (1998) Use of wind profiler in severe weather monitoring. Meteorol Z 7(6): 326–331

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Drüe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drüe, C., Hauf, T. & Hoff, A. Comparison of Boundary-Layer Profiles and Layer Detection by AMDAR and WTR/RASS at Frankfurt Airport. Boundary-Layer Meteorol 135, 407–432 (2010). https://doi.org/10.1007/s10546-010-9485-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-010-9485-0

Keywords

Navigation