Boundary-Layer Meteorology

, Volume 129, Issue 3, pp 479–495 | Cite as

Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer

  • Alfredo Peña
  • Sven-Erik Gryning
  • Charlotte B. Hasager
Original Paper


We present measurements from 2006 of the marine wind speed profile at a site located 18 km from the west coast of Denmark in the North Sea. Measurements from mast-mounted cup anemometers up to a height of 45 m are extended to 161 m using LiDAR observations. Atmospheric turbulent flux measurements performed in 2004 with a sonic anemometer are compared to a bulk Richardson number formulation of the atmospheric stability. This is used to classify the LiDAR/cup wind speed profiles into atmospheric stability classes. The observations are compared to a simplified model for the wind speed profile that accounts for the effect of the boundary-layer height. For unstable and neutral atmospheric conditions the boundary-layer height could be neglected, whereas for stable conditions it is comparable to the measuring heights and therefore essential to include. It is interesting to note that, although it is derived from a different physical approach, the simplified wind speed profile conforms to the traditional expressions of the surface layer when the effect of the boundary-layer height is neglected.


Atmospheric stability Boundary-layer height Length scales Marine boundary layer Wind speed profile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoniou I, Jørgensen HE, Mikkelsen T, Frandsen S, Barthelmie R, Perstrup C, Hurtig M (2006) Offshore wind profile measurements from remote sensing instruments. In: Proceedings of the European Wind Energy Conference. European Wind Energy Association, Athens. (
  2. Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J Geophys Res 67: 3095–3102CrossRefGoogle Scholar
  3. Busch NE, Panofsky HA (1968) Recent spectra of atmospheric turbulence. Q J Roy Meteorol Soc 94: 361–379CrossRefGoogle Scholar
  4. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189CrossRefGoogle Scholar
  5. Carl DM, Tarbell TC, Panofsky HA (1973) Profiles of wind and temperature from towers over homogeneous terrain. J Atmos Sci 30: 788–794CrossRefGoogle Scholar
  6. Charnock H (1955) Wind stress over a water surface. Q J Roy Meteorol Soc 81: 639–640CrossRefGoogle Scholar
  7. Christiansen MB, Koch W, Hortsmann J, Hasager CB (2006) Wind resource assessment from C-band SAR. Remote Sens Environ 105: 68–81CrossRefGoogle Scholar
  8. Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7: 363–372CrossRefGoogle Scholar
  9. Emeis S, Harris M, Banta RM (2007) Boundary-layer anemometry by optical remote sensing for wind energy applications. Meteorol Z 16(4): 337–347CrossRefGoogle Scholar
  10. Garratt JR (1977) Review of drag coefficients over oceans and continents. Mon Wea Rev 105: 915–929CrossRefGoogle Scholar
  11. Grachev AA, Fairall CW (1996) Dependence of the Monin-Obukhov stability parameter on the bulk Richardson number over the ocean. J Appl Meteorol 36: 406–414CrossRefGoogle Scholar
  12. Grachev AA, Fairall CW, Bradley EF (2000) Convective profile constraints revisited. Boundary-Layer Meteorol 94: 495–515CrossRefGoogle Scholar
  13. Gryning S-E, Batchvarova E (2002) Marine boundary layer and turbulent fluxes over the Baltic Sea: measurements and modelling. Boundary-Layer Meteorol 103: 29–47CrossRefGoogle Scholar
  14. Gryning S-E, Holtslag AAM, Irwin JS, Sivertsen B (1987) Applied dispersion modelling based on meteorological scaling parameters. Atmos Environ 21: 79–89CrossRefGoogle Scholar
  15. Gryning S-E, Batchvarova E, Brümmer B, Jørgensen H, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface layer. Boundary-Layer Meteorol 124: 251–268CrossRefGoogle Scholar
  16. Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42: 55–78CrossRefGoogle Scholar
  17. Högström U, Smedman A-S, Bergström H (2006) Calculation of wind speed variation with height over the sea. Wind Eng 30: 269–286CrossRefGoogle Scholar
  18. Høyer JL, She J (2007) Optimal interpolation of sea surface temperature for the North Sea and the Baltic Sea. J Mar Syst 65: 176–189CrossRefGoogle Scholar
  19. Kaimal JC, Gaynor JE (1991) Another look at sonic thermometry. Boundary-Layer Meteorol 56: 401–410CrossRefGoogle Scholar
  20. Kindler D, Oldroyd A, MacAskill A, Finch D (2007) An eight month test campaign of the Qinetiq ZephIR system: preliminary results. Meteorol Z 16(5): 479–489CrossRefGoogle Scholar
  21. Kraus EB (1972) Atmosphere-Ocean interaction. Oxford University Press, London, p 275 ppGoogle Scholar
  22. Lange B, Larsen S, Højstrup J, Barthelmie R (2004) Importance of thermal effects and the sea surface roughness for offshore wind resource assessment. J Wind Eng Ind Aerodyn 92: 959–988CrossRefGoogle Scholar
  23. Mann J, Dellwik E, Bingöl F, Rathmann O (2007) Laser measurements of flow over a forest. J Phys: Conf Ser 75:012057 (7 pp)Google Scholar
  24. Niros A, Vihma T, Launiainen J (2002) Marine meteorological conditions and air-sea exchange processes over Northern Baltic Sea in 1990s. Geophysica 38: 59–88Google Scholar
  25. Panofsky HA (1973) Tower micrometeorogy. In: Haugeb DA (ed) Workshop on micrometeorolgy. American Meteorology Society, pp 151–176Google Scholar
  26. Peña A, Gryning S-E (2008) Charnock’s roughness length model and non-dimensional wind profiles over the sea. Boundary-Layer Meteorol 128: 191–203CrossRefGoogle Scholar
  27. Peña A, Hasager CB, Gryning S-E, Courtney M, Antoniou I, Mikkelsen T (2008) Offshore wind profiling using light detection and ranging measurements. Wind Energy. doi: 10.1002/we.283
  28. Rossby CG, Montgomery RB (1935) The layers of frictional influence in wind and ocean currents. Pap Phys Oceanogr Meteorol 3(3): 101Google Scholar
  29. Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34: 1001–1027CrossRefGoogle Scholar
  30. Smith DA, Harris M, Coffey AS, Mikkelsen T, Jørgensen HE, Mann J, Danielian R (2006) Wind lidar evaluation at the Danish wind test site in Høvsøre. Wind Energy 9: 87–93CrossRefGoogle Scholar
  31. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, p 666Google Scholar
  32. Tennekes H (1973) The logarithmic wind profile. J Atmos Sci 30: 234–238CrossRefGoogle Scholar
  33. Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Q J Roy Meteorol Soc 96: 67–90CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Alfredo Peña
    • 1
    • 2
  • Sven-Erik Gryning
    • 1
  • Charlotte B. Hasager
    • 1
  1. 1.Wind Energy Department, Risø National Laboratory for Sustainable EnergyTechnical University of DenmarkRoskildeDenmark
  2. 2.Department of Geography and GeologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations