Advertisement

Boundary-Layer Meteorology

, Volume 128, Issue 3, pp 473–484 | Cite as

A Hybrid Spectral/Finite-Volume Algorithm for Large-Eddy Simulation of Scalars in the Atmospheric Boundary Layer

  • Marcelo Chamecki
  • Charles Meneveau
  • Marc B. Parlange
Original Paper

Abstract

Pseudospectral methods are frequently used in the horizontal directions in large-eddy simulation of atmospheric flows. However, the same approach often creates unphysical oscillations for scalar fields if there are horizontal heterogeneities in the sources and/or sinks, as is usual in air pollution problems. A hybrid approach is developed to combine the use of pseudospectral representation of the velocity field and bounded finite-volumes for the scalar concentration. An interpolation scheme that yields a divergence-free interpolated velocity field is derived and implemented, and its importance is illustrated by two sample applications.

Keywords

Conservative velocity interpolation Divergence free Finite volumes Large-eddy simulation Passive scalars 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertson JD, Parlange MB (1999) Surface length-scales and shear stress: implications for land-atmosphere interaction over complex terrain. Water Resour Res 35: 2121–2132CrossRefGoogle Scholar
  2. Andren A, Brown AR, Graf J, Mason PJ, Moeng CH, Nieuwstadt FTM, Schumann U (1994) Large-eddy simulation of a neutrally stratified boundary layer: a comparison of four computer codes. Quart J Roy Meteorol Soc 120: 1457–1484CrossRefGoogle Scholar
  3. Balsara DS (2001) Divergence-free adaptive mesh refinement for magneto-hydrodynamics. J Comp Phys 174: 614–648CrossRefGoogle Scholar
  4. Basu S, Porté-Agel F, Foufoula-Georgiou E, Vinuesa JF, Pahlow M (2007) Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: an integration of field and laboratory measurements with large-eddy simulations. Boundary-Layer Meteorol 119: 473–500CrossRefGoogle Scholar
  5. Bochev P, Shashnov M (2005) Constrained interpolation (remap) of divergence-free fields. Comput Methods Appl Mech Eng 194: 511–530CrossRefGoogle Scholar
  6. Bou-Zeid E, Meneveau C, Parlange MB (2005) A scale-dependent lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17: 025,105CrossRefGoogle Scholar
  7. Canuto C, Hussaini MY, Quarteroni A, Zang TA (1988) Spectral methods in fluid dynamics. Springer-Verlag, Berlin, p 567 ppGoogle Scholar
  8. Carey GF, Bicken G, Carey V, Berger C, Sanchez J (2001) Locally constrained projections on grids. Int J Numer Methods Eng 50: 549–577CrossRefGoogle Scholar
  9. Gaskell PH, Lau AKC (1988) Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm. Int J Numer Methods Fluids 8: 617–641CrossRefGoogle Scholar
  10. Högström U (1988) Non-dimensional wind and temperatures profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42: 55–78CrossRefGoogle Scholar
  11. Khanna S, Brasseur JG (1997) Analysis of Monin–Obukhov similarity from large-eddy simulation. J Fluid Mech 345: 251–286CrossRefGoogle Scholar
  12. Kosovic B, Curry JA (2000) A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J Atmos Sci 57: 1052–1068CrossRefGoogle Scholar
  13. Kumar V, Kleissl J, Parlange MB, Meneveau C (2006) A large-eddy simulation of a diurnal cycle of the turbulent atmospheric boundary layer: atmospheric stability and scaling issues. Water Resour Res 42: W06D09CrossRefGoogle Scholar
  14. Li S, Li H (2004) A novel approach of divergence-free reconstruction for adaptive mesh refinement. J Comp Phys 199: 1–15CrossRefGoogle Scholar
  15. Mao S, Feng ZG, Michaelides EE (2007) Large-eddy simulation of low-level jet-like flow in a canopy. Environ Fluid Mech 7: 73–93CrossRefGoogle Scholar
  16. Moeng CH (1984) A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41: 2052–2062CrossRefGoogle Scholar
  17. Monin AS (1970) The atmospheric boundary layer. Annu Rev Fluid Mech 2: 225–250CrossRefGoogle Scholar
  18. Nieuwstadt FTM, de Valk JPJMM (1987) A large eddy simulation of buoyant and non-buoyant plume dispersion in the atmospheric boundary layer. Atmos Environ 21: 2573–2587CrossRefGoogle Scholar
  19. Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Wea Rev 91: 99–164CrossRefGoogle Scholar
  20. Tseng YH, Meneveau C, Parlange MB (2006) Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation. Environ Sci Tech 40: 2653–2662CrossRefGoogle Scholar
  21. Waterson NP, Deconinck H (2007) Design principles for bounded higher-order convection schemes—a unified approach. J Comp Phys 224: 182–207CrossRefGoogle Scholar
  22. Xie Z, Hayden P, Voke PR, Robins AG (2004) Large-eddy simulation of dispersion: comparison between elevated and ground-level sources. J Turbulence 5: 1–16CrossRefGoogle Scholar
  23. Yeung PK, Pope SB (1988) An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J Comp Phys 79: 373–416CrossRefGoogle Scholar
  24. Yue W, Parlange MB, Meneveau C, Zhu W, van Hout R, Katz J (2007) Large-eddy simulation of plant canopy flows using plant-scale representation. Boundary-Layer Meteorol 124: 183–203CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Marcelo Chamecki
    • 1
  • Charles Meneveau
    • 2
  • Marc B. Parlange
    • 3
  1. 1.Department of Geography and Environmental Engineering and Center for Environmental and Applied Fluid MechanicsJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Mechanical Engineering and Center for Environmental and Applied Fluid MechanicsJohns Hopkins UniversityBaltimoreUSA
  3. 3.School of Architecture, Civil, and Environmental EngineeringEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations