Advertisement

Boundary-Layer Meteorology

, Volume 128, Issue 3, pp 381–401 | Cite as

A Case Study of CO2, CO and Particles Content Evolution in the Suburban Atmospheric Boundary Layer Using a 2-μm Doppler DIAL, a 1-μm Backscatter Lidar and an Array of In-situ Sensors

  • Fabien Gibert
  • Irène Xuéref-Rémy
  • Lilian Joly
  • Martina Schmidt
  • Juan Cuesta
  • Kenneth J. Davis
  • Michel Ramonet
  • Pierre H. Flamant
  • Bertrand Parvitte
  • Virginie Zéninari
Original Paper

Abstract

A network of remote and in-situ sensors was deployed in a Paris suburb in order to evaluate the mesoscale evolution of the daily cycle of CO2 and related tracers in the atmospheric boundary layer (ABL) and its relation to ABL dynamics and nearby natural and anthropogenic sources and sinks. A 2-μm heterodyne Doppler differential absorption lidar, which combines measurements of, (1) structure of the atmosphere, (2) radial velocity, and (3) CO2 differential absorption was a particularly unique element of the observational array. We analyse the differences in the diurnal cycle of CO, CO2, lidar reflectivity (a proxy for aerosol content) and H2O using the lidar, airborne measurements in the free troposphere and ground-based measurements made at two sites located few kilometres apart. We demonstrate that vertical mixing dominates the early morning drawdown of CO and aerosol content trapped in the former nocturnal layer but not the H2O and CO2 mixing ratio variations. Surface fluxes, vertical mixing and advection all contribute to the ABL CO2 mixing ratio decrease during the morning transition, with the relative importance depending on the rate and timing of ABL rise. We also show evidence that when the ABL is stable, small-scale (0.1-km vertical and 1-km horizontal) gradients of CO2 and CO are large. The results illustrate the complexity of inferring surface fluxes of CO2 from atmospheric budgets in the stable boundary layer.

Keywords

Carbon dioxide Carbon monoxide Differential absorption lidar Doppler lidar Suburban atmospheric boundary layer Lidar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AIRPARIF (2004) Report: Le cadastre des émissions pour l’année 2000 en Ile de France.’ In frame of the project, Plan de Protection de l’AtmosphèreGoogle Scholar
  2. Andres RJ, Marland G, Fung I, Mattews E (1996) A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990. Glob Biogeochem Cycles 10(3): 419–430. doi: 10.1029/96GB01523 CrossRefGoogle Scholar
  3. Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Boundary-Layer Meteorol 108(3): 397–417. doi: 10.1023/A:1024168428135 CrossRefGoogle Scholar
  4. Aubinet M, Berbigier P, Bernhofer C, Cescatti A, Feigenwinter C, Granier A, Grünwald T, Havrankova K, Heinesch B, Longdoz B, Marcolla B, Montagnant L, Sedlak P (2005) Comparing CO2 storage and advection conditions at night at different carboeuroflux sites. Boundary-Layer Meteorol 116: 63–94. doi: 10.1007/s10546-004-7091-8 CrossRefGoogle Scholar
  5. Bakwin PS, Tans PP, Hurst DF, Zhao C (1998) Measurements of carbon dioxide on very tall towers: results of the NOAA/CMDL program. Tellus 50B: 401–415Google Scholar
  6. Braud H, Bousquet P, Ramonet M (2004) CO/CO2 ratio in urban atmosphere: example of the agglomeration of Paris, France, Institut Pierre Simon Laplace (IPSL). Notes des Activités Instrumentales (N.A.I), Paris, 42Google Scholar
  7. Chen JM, Chen B, Tans P (2007) Deriving daily carbon fluxes from hourly CO2 mixing ratios measured on the WLEF tall tower: an upscaling methodology. J Geophys Res 112: G01015. doi: 10.1029/2006JG000280 CrossRefGoogle Scholar
  8. Conway TJ, Tans P, Waterman LS, Thoning KW, Kitzis DR, Masarie KA, Masarie KA, Zhang N (1994) Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J Geophys Res 99:22,831–22,855. doi: 10.1029/94JD01951
  9. Daube BC, Boering KA, Andrews AE, Wofsy SC (2002) A high-precision fast-response airborne CO2 analyzer for in situ sampling from the surface to the middle stratosphere. J Atmos Oceanic Technol 19(10): 1532–1543CrossRefGoogle Scholar
  10. Feigenwinter C, Bernhofer C, Vogt R (2004) The influence of advection on the short term CO2 budget in and above a forest canopy. Boundary-Layer Meteorol 113(2): 201–224. doi: 10.1023/B:BOUN.0000039372.86053.ff CrossRefGoogle Scholar
  11. Fitzgerald JW (1989) Model of the aerosol extinction profile in a well-mixed marine boundary layer. Appl Opt 28: 3534–3538CrossRefGoogle Scholar
  12. Fochesatto GJ, Drobinski P, Flamant C, Guedalia D, Sarrat C, Flamant PH, Pelon J (2001) Evidence of dynamical coupling between the residual layer and the developing convective boundary layer. Boundary-Layer Meteorol 99: 451–464. doi: 10.1023/A:1018935129006 CrossRefGoogle Scholar
  13. Frehlich R, Hannon SM, Henderson SW (1998) Coherent Doppler Lidar measurements of wind field statistics. Boundary-Layer Meteorol 86: 233–256. doi: 10.1023/A:1000676021745 CrossRefGoogle Scholar
  14. Gerbig C, Lin JC, Wofsy SC, Daube BC, Andrews AE, Stephens BB, Bakwin PS, Grainger CA (2003) Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor-oriented framework. J Geophys Res 108(D24): 4756. doi: 10.1029/2002JD003018 Google Scholar
  15. Gibert F, Flamant PH, Bruneau D, Loth C (2006) Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer. Appl Opt 45: 4448–4458. doi: 10.1364/AO.45.004448 CrossRefGoogle Scholar
  16. Gibert F, Schimdt M, Cuesta J, Ciais P, Ramonet M, Xuéref I, Larmanou E, Flamant PH (2007a) Retrieval of the average CO2 fluxes by combining in-situ CO2 measurements and backscatter lidar information. J Geophys Res 112: D10301. doi: 10.1029/2006JD008190 CrossRefGoogle Scholar
  17. Gibert F, Cuesta J, Yano J-I, Arnault N, Flamant PH (2007b) On the correlation between convective plume up- and downdrafts, Lidar reflectivity and depolarization ratio. Boundary-Layer Meteorol. doi: 10.1007/s10546-007-9205-6
  18. Gibert F, Marnas F, Edouart D, Flamant PH (2007c) An a posteriori method based on photo-acoustic cell information to correct for lidar transmitter spectral shift: application to atmospheric CO2 differential absorption lidar measurements. Appl Spect 61(10): 1068–1075. doi: 10.1366/000370207782217798 CrossRefGoogle Scholar
  19. Gibert F, Joly L, Xuéref-Rémy I, Schmidt M, Royer A, Flamant PH, Ramonet M, Parvitte B, Durry G, Zéninari V (2008) Inter-comparison of 2-μm Heterodyne Differential Absorption Lidar, Laser Diode Spectrometer, LICOR NDIR analyzer and flasks measurements of near-ground atmospheric CO2 mixing ratio. Spectrochim Acta A. doi: 10.1016/j.saa.2008.07.010
  20. Haeffelin M, Barthès L, Bock O, Boitel C, Bony S, Bouniol D, Chepfer H, Chiriaco M, Cuesta J, Delanoë J, Drobinski P, Dufresne J-L, Flamant C, Grall M, Hodzic A, Hourdin F, Lapouge F, Lemaître Y, Mathieu A, Morille Y, Naud C, Noël V, O’Hirok W, Pelon J, Pietras C, Protat A, Romand B, Scialom G, Vautard R (2005) SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann Geophys 23: 253–275CrossRefGoogle Scholar
  21. Hänel G (1976) The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Adv Geophys 19: 73–188Google Scholar
  22. Houghton RA, Hackler JL (1999) Emissions of carbon from forestry and land-use change in tropical Asia. Glob Change Biol 5(4): 481–492. doi: 10.1046/j.1365-2486.1999.00244.x CrossRefGoogle Scholar
  23. IPCC Climate Change 2001 (2001) The scientific basis. Contribution of Working Group I to the third assessment report of the intergovernment panel on climate change (IPCC). Cambridge University Press, New YorkGoogle Scholar
  24. Joly L, Parvitte B, Zeninari V, Durry G (2007) Development of a compact CO2 sensor open to the atmosphere and based on near-infrared laser technology at 2.68 μm. Appl Phys B 86: 743–748. doi: 10.1007/s00340-006-2568-4 CrossRefGoogle Scholar
  25. Joly L, Gibert F, Grouiez B, Grossel A, Parvitte B, Durry G, Zéninari V (2008) A complete study of CO2 line parameters around 4845 cm−1 for lidar applications. J Quant Spectrosc Radiat Transf 109: 426–434. doi: 10.1016/j.jqsrt.2007.06.003 CrossRefGoogle Scholar
  26. Kaimal JC, Wyngaard JC, Haugen DA, Coté OR, Izumi Y, Caughey SJ, Readings CJ (1979) Turbulence structure in the convective boundary layer. J Atmos Sci 33:2152–2169. doi :10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2Google Scholar
  27. Lloyd J, Francey RJ, Mollicone D, Raupach MR, Sogachev A, Arneth A, Byers JN, Kelliher FM, Rebmann C, Valentini R, Wong S-C, Bauer G, Schulze E-D (2001) Vertical profiles, boundary layer budgets, and regional flux estimates for CO2 and its 13C/12C ratio and for water vapour above a forest/bog mosaic in central Siberia. Glob Biogeochem Cycles 15(2): 267–284CrossRefGoogle Scholar
  28. Menut L, Flamant C, Pelon J, Flamant PH (1999) Urban boundary layer height determination from lidar measurements over the Paris area. Appl Opt 38: 945–954. doi: 10.1364/AO.38.000945 CrossRefGoogle Scholar
  29. Mezaros T, Haszpra L, Gelencser A (2004) The assessment of the seasonal contribution of the anthropogenic sources to the carbon monoxide budget in Europe. Atmos Environ 38: 4147–4154. doi: 10.1016/j.atmosenv.2004.04.012 CrossRefGoogle Scholar
  30. Pépin L, Schmidt M, Ramonet M, Worthy D, Ciais P (2002) A new gas chromatographic experiment to analyze greenhouse gases in flask samples and in ambient air in the region of Saclay, IPSL Internal Publication, No 13, Paris, France available on requestGoogle Scholar
  31. Rye BJ, Hardesty RM (1993) Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound. IEEE Trans Geosci Rem Sens 31: 16. doi: 10.1109/36.210440 CrossRefGoogle Scholar
  32. Staebler RM, Fitzjarrald DR (2004) Observing subcanopy CO2 advection. Agric For Meteorol 122(3/4): 139–156. doi: 10.1016/j.agrformet.2003.09.011 CrossRefGoogle Scholar
  33. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 ppGoogle Scholar
  34. Turnbull JC, Miller JB, Lehman SJ, Tans PP, Sparks RJ, Southon J (2006) Comparison of (CO2)-C-14, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophys Res Lett 33: L01817. doi: 10.1029/2005GL024213 CrossRefGoogle Scholar
  35. Vila-Gueraude Arellano J, Gioli B, Miglietta F, Jonker HJJ, Baltink HK, Hutjes RWA, Holtslag AAM (2004) Entrainment process of carbon dioxide in the atmospheric boundary layer. J Geophys Res 109: D18110. doi: 10.1029/2004JD004725 CrossRefGoogle Scholar
  36. Wang J-W (2005) Observations and simulations of synoptic, regional and local variations of atmospheric CO2. MS thesis, Colo State Univ, BoulderGoogle Scholar
  37. Wang J-W, Davis KJ, Cook BD, Bakwin PS, Yi C, Butler MP, Ricciuto DM (2005) Surface layer CO2 budget and advective contributions to measurements of net ecosystem-atmosphere exchange of CO2. Agric For Meteorol 135: 202–214. doi: 10.1016/j.agrformet.2005.11.018 CrossRefGoogle Scholar
  38. Wang J-W, Davis KJ, Cook BD, Yi C, Butler MP, Ricciuto DM, Bakwin PS (2007) Estimating daytime CO2 fluxes over a mixed forest from tall tower mixing ratio measurements. J Geophys Res 112: D10308. doi: 10.1029/2006JD007770 CrossRefGoogle Scholar
  39. Worthy DEJ, Levin I, Trivett NBA, Kuhlmann AJ, Hopper JF, Ernst MK (1998) Seven years of continuous methane observations at a remote boreal site in Ontario, Canada. J Geophys Res 103(D13): 15995–16007. doi: 10.1029/98JD00925 CrossRefGoogle Scholar
  40. Yi C, Anderson DE, Burns SP, Turnipseed AA, Monson RK (2004) Examining advection effects on eddy flux measurements at the Niwot Ridge AmeriFlux Site in the Colorado Rocky Mountains, American Geophysical Union, Fall Meeting 2004, abstract #B51A-0929Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Fabien Gibert
    • 1
    • 2
  • Irène Xuéref-Rémy
    • 3
  • Lilian Joly
    • 4
    • 5
  • Martina Schmidt
    • 3
  • Juan Cuesta
    • 1
  • Kenneth J. Davis
    • 2
  • Michel Ramonet
    • 3
  • Pierre H. Flamant
    • 1
  • Bertrand Parvitte
    • 4
  • Virginie Zéninari
    • 4
  1. 1.Institut Pierre Simon Laplace, Laboratoire de Météorologie Dynamique (LMD), Ecole PolytechniquePalaiseau CedexFrance
  2. 2.Department of MeteorologyThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement (LSCE)Gif-sur-Yvette CedexFrance
  4. 4.Groupe de Spectroscopie Moléculaire et Atmosphérique (GSMA)Université de ReimsReims Cedex 2France
  5. 5.Institut Pierre Simon Laplace (IPSL), Service d’Aéronomie, UMR CNRS 7620, CNRS-Réduit de VerrièresVerrières-le-Buisson CedexFrance

Personalised recommendations