Boundary-Layer Meteorology

, Volume 128, Issue 1, pp 77–101 | Cite as

Intercomparison and Evaluation of MM5 and Meso-NH mesoscale models in the stable boundary layer

Original Paper


Atmospheric numerical models depend critically on realistic treatment of the lower boundary conditions. In strongly thermally-stratified conditions, turbulence may be very weak and the models may find it difficult to produce a good forecast near the surface. Under clear skies and for weak synoptic winds the determining factors are the turbulent kinetic energy and surface-layer parameterizations, which can be very different between models. Here, two state-of-the-art mesoscale models (MM5 and Meso-NH) are operated under exactly the same conditions for two different nights over the Duero basin in the Iberian Peninsula: one night with a well-defined synoptic wind and a second with practically no horizontal pressure gradient. The models are inter-compared and checked against available information, and their performances are evaluated.


Mesoscale models Surface-layer parameterizations Strong thermally- stratified conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bougeault P and Lacarrère P (1989). Parametrization of orography-induced turbulence in a meso-beta scale model. Mon Wea Rev 117: 1872–1890 CrossRefGoogle Scholar
  2. Conangla L and Cuxart J (2006). On the turbulence in the upper part of the Low-Level Jet: an experimental and numerical study. Boundary-Layer Meteorol 118: 379–400 CrossRefGoogle Scholar
  3. Cuxart J, Yagüe C, Morales G, Terradellas E, Orbe J, Calvo J, Fernández A, Soler MR, Infante C, Buenestado P, Espinalt A, Joergensen HE, Rees JM, Vilà J, Redondo JM, Cantalapiedra I and Conangla L (2000a). Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES 98): A Report. Boundary-Layer Meteorol 96: 337–370 CrossRefGoogle Scholar
  4. Cuxart J, Bougeault P and Redelsperger JL (2000b). A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart J Roy Meteorol Soc 126: 1–30 CrossRefGoogle Scholar
  5. Cuxart J, Jiménez MA and Martínez D (2007). Nocturnal Meso-Beta Basin and Katabatic flows on a Midlatitude Island. Mon Wea Rev 135: 918–932 CrossRefGoogle Scholar
  6. Dudhia J (1993). A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: validation tests and simulation of an Atlantic cyclone and cold front. Mon Wea Rev 121: 1493–1513 CrossRefGoogle Scholar
  7. Dudhia J, Gill D, Manning K, Wang W, Bruyere C (2004) PSU/ NCAR mesoscale modeling system tutorial class notes and user’s guide: MM5 modeling system version 3. NCAR.
  8. Garratt JR (1975). Limitations of the Eddy-correlation technique for the determination of turbulent fluxes near the surface. Boundary-Layer Meteorol 8: 255–259 CrossRefGoogle Scholar
  9. Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note. NCAR/TN-398+STRGoogle Scholar
  10. Howell JF and Sun J (1999). Surface-layer fluxes in stable conditions. Boundary-Layer Meteorol 90: 495–520 CrossRefGoogle Scholar
  11. Janjic ZI (1994). The step-mountain eta coordinate model: further developments of convection, viscous sublayer and turbulence closure schemes. Mon Wea Rev 122: 927–945 CrossRefGoogle Scholar
  12. Jollife I, Ebert B (2007) How do I know whether one forecast system performs significantly better than another? Available via
  13. Lafore JP, Stein J, Asencio N, Bougeault P, Ducronq V, Duron J, Fisher C, Hereil P, Mascart P, Pinty JP, Redespelger JL, Richard E and Vilà-Gueraude Arellano J (1998). The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulation. Annales Geophys 16: 90–109 CrossRefGoogle Scholar
  14. Lee S and Fernando HJS (2004). Evaluation of meteorological models MM5 and HOTMAC using PAFEX-I data. J Appl Meteorol 43: 1133–1148 CrossRefGoogle Scholar
  15. Mahrt L (1982). Momentum balance of gravity flows. J Atmos Sci 39: 2701–2711 CrossRefGoogle Scholar
  16. Mahrt L (1999). Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90: 375–396 CrossRefGoogle Scholar
  17. Mahrt L (2007). Weak-wind mesoscale meandering in the nocturnal boundary layer. Environ Fluid Mech 7: 331–347 CrossRefGoogle Scholar
  18. Mahrt L and Vickers D (2002). Contrasting vertical structures of nocturnal boundary layers. Boundary-Layer Meteorol 105: 351–383 CrossRefGoogle Scholar
  19. Masson V, Champeaux JL, Chauvin F, Meriguet C and Lacaze R (2003). A global database of land surface parameters at 1-km resolution in meteorological and climate models. J Climate 9: 1261–1282 Google Scholar
  20. Morcrette JJ (1989) Description of the radiation scheme in the ECMWF model. ECMWF Tech Memo 165, Research Department ECMWF, Reading, United KingdomGoogle Scholar
  21. Noilhan J and Planton S (1989). A simple parameterization of land surface processes for meteorological models. Mon Wea Rev 177: 536–549 CrossRefGoogle Scholar
  22. Peixoto J and Oort A (1992). Physics of climate. Springer-Verlag, New York, pp 520 Google Scholar
  23. Pielke RA, Pearce RP (eds) (1994) Mesoscale modeling of the atmosphere. Meteor Monogr, No. 47, Amer Meteorol SocGoogle Scholar
  24. Poulos GS, Blumen W, Fritts D, Lundquist J, Sun J, Burns S, Nappo C, Banta R, Newsome R, Cuxart J, Terradellas E, Balsley B and Jensen M (2002). ‘CASES99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Amer Meteorol Soc 83: 555–581 CrossRefGoogle Scholar
  25. Redelsperger JL and Sommeria G (1981). Mètode de reprèsentation de la turbulence d’echelle infèrieur a la maille pour un modèle tri-dimensionel de convection nuagese. Boundary-Layer Meteorol 21: 509–530 CrossRefGoogle Scholar
  26. Renfrew IA (2004). The dynamics of idealized katabatic flow over a moderate slope and ice shelf. Quart J Roy Meteorol Soc 130: 1023–1045 CrossRefGoogle Scholar
  27. San José R, Casanova JL, Viloria RE and Casanova J (1985). Evaluation of the turbulent parameters of the unstable boundary layer outside Businger’s range. Atmos Environ 19: 1555–1561 CrossRefGoogle Scholar
  28. Soler MR, Bravo M and Ortega S (2007). The use of meteorological and dispersion models in stratified boundary layers. Dev Environ Sci 6: 199–208 Google Scholar
  29. Soler MR, Infante C, Buenestado P and Mahrt L (2002). Observations of nocturnal drainage flows in a shallow gully. Boundary-Layer Meteorol 105: 253–273 CrossRefGoogle Scholar
  30. Tarradellas E, Soler MR and Ferreres E (2005). Analysis of oscillations in the atmospheric stable boundary layer by wavelet methods. Boundary-Layer Meteorol 114: 489–518 CrossRefGoogle Scholar
  31. Zhong S and Fast J (2003). An evaluation of the MM5, RAMS and Meso-Eta models at subkilometer resolution using VTMX field campaign in the Salt Lake Valley. Mon Wea Rev 131: 1301–1322 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Astronomy and Meteorology, Faculty of PhysicsUniversity of BarcelonaBarcelonaSpain
  2. 2.Grup de Meteorologia, Departament de FísicaUniversitat de les Illes BalearsPalma de MallorcaSpain

Personalised recommendations