Boundary-Layer Meteorology

, Volume 123, Issue 1, pp 99–120 | Cite as

Estimating the components of the sensible heat budget of a tall forest canopy in complex terrain

  • U. Moderow
  • C. Feigenwinter
  • C. Bernhofer
Original Paper


Ultrasonic wind measurements, sonic temperature and air temperature data at two heights in the advection experiment MORE II were used to establish a complete budget of sensible heat including vertical advection, horizontal advection and horizontal turbulent flux divergence. MORE II took place at the long-term Carbo-Europe IP site in Tharandt, Germany. During the growing period of 2003 three additional towers were established to measure all relevant parameters for an estimation of advective fluxes, primarily of CO2. Additionally, in relation to other advection experiments, a calculation of the horizontal turbulent flux divergence is proposed and the relation of this flux to atmospheric stability and friction velocity is discussed. In order to obtain a complete budget, different scaling heights for horizontal advection and horizontal turbulent flux divergence are tested. It is shown that neglecting advective fluxes may lead to incorrect results. If advective fluxes are taken into account, the sensible heat budget based upon vertical turbulent flux and storage change only, is reduced by approximately 30%. Additional consideration of horizontal turbulent flux divergence would in turn add 5–10% to this sum (i.e., the sum of vertical turbulent flux plus storage change plus horizontal and vertical advection). In comparison with available energy horizontal advection is important at night whilst horizontal turbulent flux divergence is rather insignificant. Obviously, advective fluxes typically improve poor nighttime energy budget closure and might change ecosystem respiration fluxes considerably.


Advection Divergence Energy budget Sensible heat flux 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbgier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv Ecol Res 30:113–175CrossRefGoogle Scholar
  2. Aubinet M, Chermanne B, Vandenhaute M, Longdoz B, Yernaux M, Laitat E (2001) Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agric For Meteorol 108:293–315CrossRefGoogle Scholar
  3. Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2-advection in a sloping forest. Boundary-Layer Meteorol 108:397–417CrossRefGoogle Scholar
  4. Aubinet M, Berbigier P, Bernhofer C, Cescatti A, Feigenwinter C, Granier A, Grünwald T, Havrankova K, Heinesch B, Longdoz B, Marcolla B, Montagnani L, Sedlak P (2005) Comparing CO2 storage and advection conditions at night at different CARBOEUROFLUX sites. Boundary-Layer Meteorol 116:63–94CrossRefGoogle Scholar
  5. Baldocchi D, Finnigan J, Wilson K, Paw U, K. T., Falge E (2000) On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorol 96:257–291Google Scholar
  6. Bernhofer C, Aubinet M, Clement R, Grelle A, Grünwald T, Ibrom A, Jarvis P, Rebmann C, Schulze E-D, Tenhunen JD (2003) Spruce forests (Norway and Sitka Spruce, Including Douglas Fir): carbon and water fluxes and balances, ecological and ecophysiological determinants. In: Valentini R (ed) Fluxes of carbon, energy and water of European forests, ecological studies, vol 163. Springer, Berlin, pp 99–123Google Scholar
  7. Bernhofer C, Feigenwinter C, Grünwald T, Vogt R (2003a) Spectral correction of water and carbon flux for EC measurements at the anchor station tharandt. In: Bernhofer C (ed) Tharandter Klimaprotokolle, vol 8. Dresden University of Technology, Dresden, pp 1–13Google Scholar
  8. Bernhofer C, Köstner B (2003) Vertical transports of trace gases at anchor stations and their spatial/temporal extrapolation under complex natural conditions. AFO2000 Newslett 2:3–6Google Scholar
  9. Bernhofer C, Vogt R (1999) Energy balance closure gaps – a methodical problem of Eddy covariance measurements? In: Dear RJ, Kalma JD, Oke TR, Auliciems A (eds) Biometeorology and urban climatology at the turn of the millennium: Selected papers from the conference ICB-ICUC’99 (Sydney, 8–12. November 1999), pp 199–203Google Scholar
  10. Bernhofer C (1992) Applying a simple three-dimensional Eddy correlation system for latent and sensible heat flux to contrasting canopies. Theor Appl Climatol 46:163–172CrossRefGoogle Scholar
  11. Blanford JH, Bernhofer C, Gay LW (1991) Energy flux mechanism over a Pecan Orchard Oasis. In: Proceedings, 20th Agricultural and Forest Meteorology. Conference, Salt Lake City, UT, American Meteorological Society, 45 Beacon St., Boston, MA, pp 116–119Google Scholar
  12. Eugster W, Senn W (1995) A cospectral correction model for measurement of turbulent NO2 flux. Boundary-Layer Meteorol 74:321–340CrossRefGoogle Scholar
  13. Feigenwinter C, Bernhofer C, Vogt R (2004) The influence of advection on short term CO2 budget in and above forest canopy. Boundary-Layer Meteorol 113:201–224CrossRefGoogle Scholar
  14. Finnigan JJ (1999) A comment on the paper by Lee (1998): “On micrometeorological observations of surface-air exchange over tall vegetation”. Agric For Meteorol 97:55–67CrossRefGoogle Scholar
  15. Goulden ML, Munger JW, Song-Miao F, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term Eddy covariance: methods and a critical evaluation of accuracy. Global Change Biol 2:169–182CrossRefGoogle Scholar
  16. Grelle A, Lindroth Q (1996) Eddy-correlation system for long-term monitoring fluxes of heat, water vapour and CO2. Global Change Biol 2:297–307CrossRefGoogle Scholar
  17. Grünwald T (2002) Langfristige Beobachtungen von Kohlendioxidflüssen mittels Eddy-Kovarianz-Technik über einem Altfichtenbestand im Tharandter Wald. Ph.D. Dissertation, Dresden University of Technology, Dresden, Germany, 124 ppGoogle Scholar
  18. Kaimal JC, Wyngaard JC, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Quart J Roy Meteorol Soc 98:563–589CrossRefGoogle Scholar
  19. Lee X (1998) On micrometeorological observations of surface-air exchange over tall vegetation. Agric For Meteorol 91:39–49CrossRefGoogle Scholar
  20. Lee X, Hu X (2002) Forest-air fluxes of carbon, water and energy over non-flat terrain. Boundary-Layer Meteorol 103:277–301CrossRefGoogle Scholar
  21. Lee X (2004) Forest-air exchange in non-ideal conditions: the role of horizontal flux and its divergence. In: Mencuccini M, Grace J, Moncrieff J, McNaughton KG (eds) Forest at the land-atmosphere interface. CABI Publishing, Cambridge, pp 145–157Google Scholar
  22. Marcolla B, Cescatti A, Montagnani L, Manca G, Kerschbaumer G, Minerbi S (2005) Importance of advection in the atmospheric CO2 exchanges of an alpine forest. Agric For Meteorol 130:193–206CrossRefGoogle Scholar
  23. Mellmann P (1998) Die Bedeutung der Speicherterme bei zeitlich hochauflösender Verdunstungsbestimmung am Beispiel des Tharandter Waldes. Diploma thesis, Dresden University of Technology, Dresden, GermanyGoogle Scholar
  24. Panin GN, Tetzlaff G, Raabe A (1998) Inhomogeneity of the land surface and problems in parameterisation of the surface fluxes in natural conditions. Theor Appl Climatol 60:163–178CrossRefGoogle Scholar
  25. Paw UKT, Baldocchi D, Meyers TP, Wilson KB (2000) Correction of Eddy-covariance measurements incorporation both advective effects and density fluxes. Boundary-Layer Meteorol 97:487–511CrossRefGoogle Scholar
  26. Pilegaard K, Hummelshj P, Jensen NO, Chen Z (2001) Two years of continuous CO2 Eddy-flux measurements over a Danish beech forest. Agric For Meteorol 107:29–41CrossRefGoogle Scholar
  27. Queck R (2004) Fraktionierung und zeitliche Differenzierung von Depositionsraten in Waldbeständen. Ph.D. Dissertation, Dresden University of Technology, Dresden, Germany, 234 ppGoogle Scholar
  28. Rebmann C, Göckede M, Foken T, Aubinet M, Aurela M, Berbigier P, Bernhofer C, Buchmann N, Carrara A, Cescatti A, Ceulemans R, Clement R, Elbers JA, Granier A, Grünwald T, Guyon D, Havrankova K, Heinesch B, Knohl A, Laurila T, Longdoz B, Marcolla B, Markkanen T, Miglietta F, Moncrieff J, Montagnani L, Moors E, Nardino M, Ourcival J-M, Rambal S, Rannik Ü, Rotenberg E, Sedlak P, Unterhuber G, Vesala T, Yakir D (2005) Quality analysis applied on Eddy covariance measurements at complex forest sites using footprint modelling. Theor Appl Climatol 80:121–141CrossRefGoogle Scholar
  29. Schotanus P, Nieuwstadt FTM, De Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol 26:81–93CrossRefGoogle Scholar
  30. Staebler RM, Fitzjarrald DR (2004) Observing subcanopy CO2 advection. Agric For Meteorol 122:139–156CrossRefGoogle Scholar
  31. Valentini R, De Angelis P, Matteucci G, Monaco R, Dore S, Scarascia Mucnozza GE (1996) Seasonal net carbon dioxide exchange of a beech forest with the atmosphere. Global Change Biol 2:199–207CrossRefGoogle Scholar
  32. Valentini R (ed) (2003) Fluxes of carbon, water and energy of European forests, ecological studies, vol 163. Springer, Berlin, 266 ppGoogle Scholar
  33. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150CrossRefGoogle Scholar
  34. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–243CrossRefGoogle Scholar
  35. Wyngaard JC, Rockwell L, Izumi Y (1971) Local free convection similarity and the budgets of shear stress and heat flux. J Atmos Sci 28:1171–1182CrossRefGoogle Scholar
  36. Yi C, Davis KJ, Bakwin PS, Berger BW, Marr LC (2000) Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower. J Geophys Res 105:9991–9999CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2006

Authors and Affiliations

  1. 1.Institute of Hydrology and Meteorology, Department of MeteorologyTechnische Universität DresdenDresdenGermany
  2. 2.Institute of Meteorology, Climatology and Remote SensingUniversity of BaselBaselSwitzerland
  3. 3.Unitè de Physique des BiosytèmesGemblouxBelgium

Personalised recommendations