Skip to main content
Log in

Combining Non-local Scalings with a TKE Closure for Mixing in Boundary-layer Clouds

  • Original Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A new approach to the parametrization of the cumulus-capped boundary layer is described. It combines a traditional higher-order turbulence closure, appropriate for boundary layers where the skewness of thermodynamic variable probability distributions is low (typically stratocumulus-capped), with non-local scaled similarity functions. These are introduced in order to represent explicitly that part of the distribution arising from skewed cumulus elements and the scalings are found to work very well against equilibrium shallow cumulus large-eddy simulations. Results from a wide range of single column model simulations, from stratocumulus to shallow cumulus to cumulus rising into stratocumulus, are presented that demonstrate the validity of the approach as a means of parametrizing the cloudy boundary layer. Sensitivity tests show that enhancement of the turbulence length scales and the buoyancy production of TKE are especially important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bechtold P, Cuijpers JWM, Mascart P, Trouilhet P (1995) Modeling of trade wind cumuli with a low-order turbulence model: towards a unified description of Cu and Sc clouds in meteorological models. J Atmos Sci 52: 455–463

    Article  Google Scholar 

  • Bechtold P, Siebesma P (1998) Organization and representation of boundary layer clouds. J Atmos Sci 55:888–895

    Article  Google Scholar 

  • Belair S, Mailhot J, Strapp J, MacPherson JI (1999) An examination of local versus nonlocal aspects of a TKE based boundary layer scheme in clear convective conditions. J. Appl. Meteorol. 38:1499–1518

    Article  Google Scholar 

  • Brown AR, Cederwall RT, Chlond A, Duynkerke PG, Golaz J-C, Khairoutdinov M, Lewellen DC, Lock AP, MacVean MK, Moeng C-H, Neggers RAJ, Siebesma AP, Stevens B (2002) Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quart J Roy Meteorol Soc 128: 1075–1093

    Article  Google Scholar 

  • Bougeault P, Lacarrere P (1989) Parametrization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev. 117: 1872–1890

    Article  Google Scholar 

  • Cuijpers JWM, Bechtold P (1995) A simple parametrization of cloud water related variables for use in boundary layer models. J Atmos Sci 52: 2486–2490

    Article  Google Scholar 

  • Duynkerke PG, de Roode SR, van Zanten MC, Calvo J, Cuxart J, Cheinet S, Chlond A, Grenier H, Jonker PJ, Kohler M, Lenderink G, Lewellen D, Lappen C-L, Lock AP, Moeng C-H, Muller F, Olmeda D, Piriou J-M, Sanchez E, Sednev I (2004) Observations and numerical simulations of the diurnal cycle of the EUROCS stratocumulus case. Quart J Roy Meteorol Soc 130: 3269–3296

    Article  Google Scholar 

  • Grant ALM, Brown AR (1999) A similarity hypothesis for cumulus transports. Quart J Roy Meteorol Soc 125: 1913–1935

    Article  Google Scholar 

  • Grant ALM (2001) Cloud base fluxes in the cumulus-capped boundary layer. Quart J Roy Meteorol Soc 127: 407–421

    Article  Google Scholar 

  • Grant ALM, Lock AP (2004) The turbulent kinetic energy budget for shallow convection. Quart J Roy Meteorol Soc 130: 401–422

    Article  Google Scholar 

  • Lenderink G, Holtslag AAM (2004) An updated length scale formulation for turbulent mixing in clear and cloudy boundary layers. Quart J Roy Meteorol Soc 130: 3405–3427

    Article  Google Scholar 

  • Lenderink G, Siebesma AP, Cheinet S, Irons S, Jones CG, Marquet P, Muller F, Olmeda D, Calvo J, Sanchez E, Soares PMM (2004) The diurnal cycle of shallow Cumulus clouds over land: A single column model intercomparison study. Quart J Roy Meteorol Soc 130:3339–3364

    Article  Google Scholar 

  • Lock AP (1998) The parametrization of entrainment in cloudy boundary layers. Quart J Roy Meteorol Soc 124: 2729–2753

    Article  Google Scholar 

  • Lock AP, MacVean MK (1999a) The parametrization of entrainment driven by surface heating and cloud-top cooling. Quart J Roy Meteorol Soc 125: 271–299

    Article  Google Scholar 

  • Lock AP, MacVean MK (1999b) The generation of turbulence and entrainment by buoyancy reversal. Quart J Roy Meteorol Soc 125: 1017–1038

    Article  Google Scholar 

  • Lock AP, Brown AR, Bush MR, Martin GM, Smith RNB (2000) A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev. 128: 3187–3199

    Article  Google Scholar 

  • Lock AP (2001) The numerical representation of entrainment in parametrizations of boundary layer turbulent mixing. Mon. Wea. Rev. 129: 1148–1163

    Article  Google Scholar 

  • Mailhot J, Lock AP (2004) An examination of several parametrizations of mixing lengths in a stable boundary layer: the GABLS case. In proceedings of the 16th Symposium on Boundary Layers and Turbulence, Portland, USA, AMS, http://ams.confex.com/ams/BLTAIRSE/techprogram/paper_78738.htm

  • Ricard JL, Royer JF (1993) A statistical cloud scheme for use in an AGCM. Annales Geophysicae 11:1095–1115

    Google Scholar 

  • Siebesma AP, Bretherton CS, Brown AR, Chlond A, Cuxart J, Duynkerke PG, Lewellen DC, MacVean MK, Neggers RAJ, Sanchez E, Siebesma AP, Stevens DE (2003) A large eddy simulation intercomparison study of shallow cumulus convection. J Atmos Sci 60: 1201–1219

    Article  Google Scholar 

  • Stevens B, Ackerman AS, Albrecht BC, Brown AR, Chlond A, Cuxart J, Duynkerke PG, Lewellen DC, MacVean MK, Sanchez E, Siebesma AP, Stevens DE (2000). Simulations of trade-wind cumuli under a strong inversion. J Atmos Sci 58: 1870–1891

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Lock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lock, A., Mailhot, J. Combining Non-local Scalings with a TKE Closure for Mixing in Boundary-layer Clouds. Boundary-Layer Meteorol 121, 313–338 (2006). https://doi.org/10.1007/s10546-006-9062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-006-9062-8

Keywords

Navigation