On the Variability of the Fluxes of Momentum and Sensible Heat



Direct measurements of the air–sea turbulent fluxes of momentum and heat, along with surface currents, waves and supporting meteorological variables, were acquired during a recent field campaign. Surface currents, measured from a very high frequency radar, were found to steer the stress away from the mean wind direction. Although this effect has been reported in a recent scatterometer study, this is the first time it has been observed in an in situ study with co-located flux, wind and surface current measurements. Data collected during a week of stationary conditions are used to investigate and quantify the sampling variability of the air–sea fluxes of momentum and sensible heat.


Air–sea fluxes Sampling variability Stress direction Surface currents Wind stress 


  1. Anctil F., Donelan M.A., Drennan W.M., and Graber H.C., (1994), ‘Eddy Correlation Measurements of Air–Sea Fluxes from a Discus Buoy’. J. Atmos. Ocean. Technol. 11, 1144–1150CrossRefGoogle Scholar
  2. Capon J., (1969), ‘High-resolution Frequency-Wavenumber Spectrum Analysis’. Proc. IEEE 57, 1408–1418CrossRefGoogle Scholar
  3. Cornillon P., Park K.-A., (2001), ‘Warm Core Ring Velocities Inferred from NSCAT’. Geophys. Res. Lett. 28, 575–578CrossRefGoogle Scholar
  4. DeCosmo J., Katsaros K.B., Smith S.D., Anderson R.J., Oost W.A., Bumke K., and Chadwick H., (1996), ‘Air–Sea Exchange of Water Vapor and Sensible Heat: The Humid- ity Exchange Over the Sea (HEXOS) results’. J. Geophys. Res. 101, 12001–12016CrossRefGoogle Scholar
  5. Dhanak M.R., An P.E., and Holappa K., (2001), ‘An AUV Survey in the Littoral Zone: Small-scale Subsurface Variability Accompanying Synoptic Observations of Surface Cur-rents’. IEEE J. Oceanic Eng. 24, 752–768CrossRefGoogle Scholar
  6. Donelan M.A., (1990), ‘Air–Sea Interaction’. In: LeMéhauté B., and Hanes D. (eds), The Sea: Ocean Engineering Science. John Wiley and Sons Inc, New York, pp. 239–292Google Scholar
  7. Donelan M.A., Hamilton J., and Hui W.H., (1985), ‘Directional Spectra of Wind Gener-ated Waves’. Phil. Trans. R. Soc. London A315, 509–562CrossRefGoogle Scholar
  8. Drennan W.M., Donelan M.A., Madsen N., Katsaros K.B., Terray E.A., and Flagg C.N., (1994), ‘Directional Wave Spectra from a Swath Ship at Sea’. J. Atmos. Ocean. Technol. 11, 1109–1116CrossRefGoogle Scholar
  9. Drennan W.M., Graber H.C., Hauser D., and Quentin C., (2003), ‘On the Wave Age Dependence of Wind Stress over Pure Wind Seas’. J. Geophys. Res. 108(C3): 8062, doi:10.1029/2000JC000715CrossRefGoogle Scholar
  10. Drennan W.M., Taylor P.K., and Yelland M.J., (2005), ‘Parameterizing the Sea Surface Roughness’. J. Phys. Oceanogr. 35, 835–848CrossRefGoogle Scholar
  11. Dupuis H., Guérin C., Hauser D., Weill A., Nacass P., Drennan W.M., Cloché, S., and Graber H.C., (2003), ‘Impact of Flow Distortion Corrections on Turbulent Fluxes Esti-mated by the Inertial Dissipation Method during the FETCH Experiment on R/V L’At-alante’. J. Geophys. Res. 108 (C3): 8064, doi:10.1029/2001JC001075CrossRefGoogle Scholar
  12. Dupuis H., Taylor P.K., Weill A., and Katsaros K., (1997), ‘Inertial Dissipation Method Applied to Derive Turbulent Fluxes over the Ocean During the Surface of the Ocean, Fluxes and Interactions with the Atmosphere/Atlantic Stratocumulus Transition Exper-iment (SOFIA/ASTEX) and Structure des Echanges Mer-Atmosphere, Proprietes des Hétérogeneites Océaniques: Recherche Experimentale (SEMAPHORE) Experiments with Low to Moderate Wind Speeds’. J. Geophys. Res. 102, 21115–21129CrossRefGoogle Scholar
  13. Dyer A.J., Garratt J.R., Francey R.J., McIlroy I.C., Bacon N.E., Hyson P., Bradley E.F., Denmead O.T., Tsvang L.R., Volkov Y.A., Koprov B.M., Elagina L.G., Sasashi K., Monji N., Hanafusa T., Tsukamoto O., Frenzen P., Hicks B.B., Wesely M., Miyake M., and Shaw W., (1982), ‘An International Turbulence Comparison Experiment (ITCE 1976)’. Boundary-Layer Meteorol. 24, 181–209CrossRefGoogle Scholar
  14. Geernaert G.L., Davidson K.L., Larsen S.E., and Mikkelson T., (1988), ‘Wind Stress Measurements During the Tower Ocean Wave and Radar Dependence Experiment’. J. Geophys. Res. 93, 13913–13923Google Scholar
  15. Geernaert G.L., Hansen F., Courtney M., and Herbers T., (1993), ‘Directional Attributes of the Ocean Surface Wind Stress Vector’. J. Geophys. Res. 98, 16571–16582Google Scholar
  16. Gerling T.W., (1992), ‘Partitioning Sequences and Arrays of Directional Ocean Wave Spectra into Component Wave Systems’. J. Atmos. Ocean. Technol. 9, 444–458CrossRefGoogle Scholar
  17. Graber H.C., Terray E.A., Donelan M.A., Drennan W.M., Van Leer J.C., and Peters D.B., (2000), ‘ASIS – A New Air–Sea Interaction Spar Buoy: Design and Performance at sea’. J. Atmos. Ocean. Technol. 17, 708–720CrossRefGoogle Scholar
  18. Grachev A.A., Fairall C.W., Hare J.E., Edson J.B., and Miller S.D., (2003), ‘Wind Stress Vector over Ocean Waves’. J. Phys. Oceanogr. 33, 2408–2429CrossRefGoogle Scholar
  19. Halpern D., (1988), ‘Moored Surface Wind Observations at Four Sites along the Pacific Equator between 140° and 95°W′, J. Climate 1, 1251–1260CrossRefGoogle Scholar
  20. Högström U., Smedman A.S., (2004), ‘Accuracy of Sonic Anemometers: Laminar Wind-tunnel Calibrations Compared to Atmospheric In Situ Calibrations Against A Reference Instrument’. Boundary-Layer Meteorol. 111, 33–54CrossRefGoogle Scholar
  21. Kaimal J.C., Gaynor J.E., (1991), ‘Another Look at Sonic Anemometry’. Boundary-Layer Meteorol. 56, 401–410CrossRefGoogle Scholar
  22. Katsaros K.B., (1980), ‘The Aqueous Thermal Boundary Layer’. Boundary-Layer Meteorol. 18, 107–127CrossRefGoogle Scholar
  23. Katsaros K.B., Donelan M.A., and Drennan W.M., (1993), ‘Flux Measurements from a Swath Ship in SWADE’. J. Mar. Sys. 4, 117–132CrossRefGoogle Scholar
  24. Kitaigorodskii S.A., Volkov Y.A., (1965), ‘On the Roughness Parameter of the Sea Surface and the Calculation of Momentum Flux in the Near-Water Layer of the Atmo-sphere’. Izv., Atmos., Oceanic Phys. 1, 973–988Google Scholar
  25. Krogstad H.E., Wolf J., Thompson S.P., and Wyatt L.R., (1999), ‘Methods for Intercomparison of Wave Measurements’. Coastal Eng. 37, 235–257CrossRefGoogle Scholar
  26. Large W.G., Pond S., (1982), ‘Sensible and Latent Heat Flux Measurements over the Ocean’. J. Phys. Oceanogr. 12, 464–482CrossRefGoogle Scholar
  27. Larsén X.G., Smedman A.S., and Högstr öm U., (2004), ‘Air–Sea Exchange of Sensible Heat Over the Baltic Sea’. Quart. J. Roy. Meteorol. Soc. B 130, 519–539CrossRefGoogle Scholar
  28. Lumley J.L., Panofsky H.A., (1964), The Structure of Atmospheric Turbulence, Inter-science, New York, 239 pp.Google Scholar
  29. Martinez-Pedraja J., Shay L.K., Cook T.M., and Haus B.K., (2004), ‘Very High Fre- quency Surface Current Measurement along the Inshore Boundary of the Florida Cur-rent during NRL 2001’. RSMAS Technical Report 2004–03. Rosenstiel School of Marine and Atmosphere Science, University of Miami, Miami, FL 33149, 30 ppGoogle Scholar
  30. Pedreros R., Dardier G., Dupuis H., Graber H.C., Drennan W.M., Weill A., Guérin C., and Nacass P., (2003), ‘Momentum and Heat Fluxes via the Eddy Correlation Method on the R/V L’Atalante and an ASIS buoy’. J. Geophys. Res. 108(C11): 3339, doi:10.1029/2002JC001449CrossRefGoogle Scholar
  31. Peters H., Shay L.K., Mariano A.J., and Cook T.M., (2002), ‘Current Variability on a Narrow Shelf with Large Ambient Vorticity’. J. Geophys. Res. 107(C8), doi:10.1029/2001JC000813Google Scholar
  32. Pettersson H., Graber H.C., Hauser D., Quentin C., Kahma K.K., Drennan W.M., and Donelan M.A., (2003), ‘Directional Wave Measurements from Three Wave Sensors during the FETCH Experiment’. J. Geophys. Res. 108(C3): 8061, doi:10.1029/2001JC001164CrossRefGoogle Scholar
  33. Rieder K.F., Smith J.A., and Weller R.A., (1994), ‘Observed Directional Characteristics of the Wind, Wind Stress and Surface Waves on the Open Ocean’. J. Geophys. Res. 99, 22589–22596CrossRefGoogle Scholar
  34. Schotanus P., Nieuwstadt F.T.M., and DeBruin H.A.R., (1983), ‘Temperature Measure-ment with a Sonic Anemometer and its Application to Heat and Moisture Fluctuations’. Boundary-Layer Meteorol. 26, 81–93CrossRefGoogle Scholar
  35. Shay L.K., Cook T.M., Peters H., Mariano A.J., Weisberg R., An P.E., Soloviev A., and Luther M., (2002), ‘Very High Frequency Radar Mapping of Surface Currents’. IEEE J. Oceanic Eng. 27, 155–169CrossRefGoogle Scholar
  36. Shay L.K., Cook T.M., and An P.E., (2003), ‘Submesoscale Coastal Ocean Flows Detected by VHF Radar and Autonomous Underwater Vehicles’. J. Atmos. Oceanic Tech-nol. 20, 1583–1599CrossRefGoogle Scholar
  37. Smith S.D., (1980), ‘Wind Stress and Heat Flux over the Ocean in Gale Force Winds’. J. Phys. Oceanogr. 10, 709–726CrossRefGoogle Scholar
  38. Smith S.D., (1989), ‘Water Vapor Flux at the Sea Surface’. Boundary-Layer Meteorol. 47, 277–293CrossRefGoogle Scholar
  39. Soloviev A.V., Walker R.J., Weisberg R.W., and Luther M.E., (2003), ‘Coastal Observa-tory Investigates Energetic Current Oscillations on Southeast Florida Shelf’. EOS, Trans. Amer. Geophys. Union 84, 441–450Google Scholar
  40. Sreenivasan K.R., Chambers A. J., and Antonia R.A., (1978), ‘Accuracy of Moments of Velocity and Scalar Fluctuations in the Atmospheric Surface Layer’. Boundary-Layer Meteorol. 14, 341–359CrossRefGoogle Scholar
  41. Stewart R.H., Joy J.W., (1974), ‘HF Radio Measurements of Surface Currents’. Deep Sea Res. 21, 1039–1049Google Scholar
  42. Stull R.B., (1988), An Introduction to Boundary Layer Meteorology. Kluwer Academic Pub-lishers, Dordrecht, 666 ppGoogle Scholar
  43. Venezia, W. et al., (2003), ‘SFOMC: A successful Navy and Academic Partnership Providing Sustained Ocean Observation Capabilities in Florida Straits’. Marine Tech. Soc. 37, 81–91CrossRefGoogle Scholar
  44. Wyngaard J.C., (1973), ‘On Surface Layer Turbulence’. In: Haugen D.A. (ed.), Workshop on Micrometeorology, Amer. Meteorol. Soc., Boston, pp. 101–149.Google Scholar
  45. Zemba J., Friehe C.A., (1987), ‘The Marine Atmospheric Boundary Layer Jet in the Coastal Ocean Dynamics Experiment’. J. Geophys. Res. 92, 1489–1496CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiU.S.A

Personalised recommendations