Boundary-Layer Meteorology

, Volume 118, Issue 1, pp 169–187 | Cite as

Effect of Roughness on Surface Boundary Conditions for Large-Eddy Simulation



An important parameterization in large-eddy simulations (LESs) of high- Reynolds-number boundary layers, such as the atmospheric boundary layer, is the specification of the surface boundary condition. Typical boundary conditions compute the fluctuating surface shear stress as a function of the resolved (filtered) velocity at the lowest grid points based on similarity theory. However, these approaches are questionable because they use instantaneous (filtered) variables, while similarity theory is only valid for mean quantities. Three of these formulations are implemented in simulations of a neutral atmospheric boundary layer with different aerodynamic surface roughness. Our results show unrealistic influence of surface roughness on the mean profile, variance and spectra of the resolved velocity near the ground, in contradiction of similarity theory. In addition to similarity-based surface boundary conditions, a recent model developed from an a priori experimental study is tested and it is shown to yield more realistic independence of the results to changes in surface roughness. The optimum value of the model parameter found in our simulations matches well the value reported in the a priori wind-tunnel study.


Aerodynamic roughness length Atmospheric boundary layer Large-eddy simulation Surface boundary conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertson, J. D., Parlange, M. B. 1999‘Surface Length Scales and Shear Stress: Implications for Land-Atmosphere Interactions over Complex Terrain’Water Resources Res.3521212132CrossRefGoogle Scholar
  2. Cabot, W., Moin, P. 2000‘Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow’.Flow, Turbul. Combust.63269291Google Scholar
  3. Grötzbach, G.: 1987, ‘Direct Numerical and Large Eddy Simulations of Turbulent Channel Flows’, in N. P. Cheremisinoff (ed.), Encyclopedia of Fluid Mechanics, Vol. 6, Gulf, pp. 1337–1391.Google Scholar
  4. Kader, B. A. 1984‘Structure of Anisotropic Velocity and Temperature Fluctuations in a Developed Turbulent Boundary Layer’Izv. Akad. Nauk SSSR, Meckh. Zhidk. i Gaza44756Google Scholar
  5. Kader, B. A., Yaglom, A. M. 1990‘Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary Layers’J. Fluid Mech.212637662Google Scholar
  6. Kader, B. A., Yaglom, A. M. 1991‘Spectra and Correlation Functions of Surface Layer Atmospheric Turbulence in Unstable Thermal Stratification’Métais, O.Lesieur, M. eds. Turbulence and Coherent StructuresKluwer Academic PublishersDordrecht387412Google Scholar
  7. Katul, G. G., Chu, R. C. 1998‘A Theoretical and Experimental Investigation of Energy-Containing Scales in the Dynamic Sublayer of Boundary-Layer Flows’Boundary-Layer Meteorol.86279312CrossRefGoogle Scholar
  8. Katul, G. G., Chu, R. C., Parlange, M. B., Albertson, J. D., Ortenburger, T. A. 1995‘Low-Wavenumber Spectral Characteristics of Velocity and Temperature in the Atmospheric Boundary Layer’J. Geophys. Res.1001424314255CrossRefGoogle Scholar
  9. Kolmogorov, A. N. 1941‘The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Number’Dokl. Akad. Nauk S.S.S.R.30299303Google Scholar
  10. Krogstad, P. A., Antonia, R. A. 1999‘Surface Roughness Effects in Turbulent Boundary Layers’Exp. Fluids27450460Google Scholar
  11. Krogstad, P. A., Antonia, R. A., Browne, L. W. B. 1992‘Comparison Between Rough- and Smooth-Wall Turbulent Boundary Layers’J. Fluid Mech.245599617Google Scholar
  12. Marusic, I., Kunkel, G. J., Porté -Agel, F. 2001‘Experimental Study of Wall Boundary Conditions for Large Eddy Simulation’J. Fluid Mech.446309320Google Scholar
  13. Mason, P. J., Callen, N. S. 1986‘On the Magnitude of the Subgrid-Scale Eddy Coefficient in Large-Eddy Simulations of Turbulent Channel Flow’J. Fluid Mech.162439462Google Scholar
  14. Moeng, C. H. 1984‘A Large-Eddy Simulation Model for the Study of Planetary Boundary -Layer Turbulence’J. Atmos. Sci.4623112330Google Scholar
  15. Monin, A. S., Obukhov, A. M. 1954‘Basic Laws of Turbulent Mixing in the Ground Layer of the Atmosphere’Trans. Geophys. Inst. Akad. Nauk. USSR151163187Google Scholar
  16. Orszag, S.A., Pao, Y.H. 1974‘Numerical Computation of Turbulent Shear Flows’Adv. Geophys.18A224236Google Scholar
  17. Perry, A. E., Henbest, S. M., Chong, M. S. 1986‘A Theoretical and Experimental Study of Wall Turbulence’J. Fluid Mech.165163199Google Scholar
  18. Perry, A.E., Lim, K.L., Henbest, S.M. 1987‘An Experimental Study of the Turbulence Structure in Smooth- and Rough-Wall Boundary Layers’J. Fluid Mech.177437466Google Scholar
  19. Piomelli, U., Balaras, E. 2002‘Wall-Layer Models for Large-Eddy Simulations’Ann. Rev. Fluid Mech.34349374CrossRefGoogle Scholar
  20. Piomelli, U., Ferziger, J., Moin, P. 1989‘New Approximate Boundary Conditions for Large Eddy Simulations of Wall-Bounded Flows’Phys. Fluids A110611068CrossRefGoogle Scholar
  21. Pope, S.B. 2000Turbulent FlowsCambridge University PressU.K.771Google Scholar
  22. Porté -Agel, F., Meneveau, C., Parlange, M. B. 2000‘A Scale-Dependent Dynamic Model for Large-Eddy Simulations: Application to a Neutral Atmospheric Boundary Layer’J. Fluid Mech.415261284Google Scholar
  23. Rajagopalan, S., Antonia, R. A. 1979‘Some Properties of the Large Structure in a Fully Developed Turbulent Duct Flow’Phys. Fluids.22614622CrossRefGoogle Scholar
  24. Saddoughi, S. G., Veeravalli, S. V. 1994‘Local Isotropy in Turbulent Boundary Layers at high Reynolds Number’J. Fluid Mech.268333372Google Scholar
  25. Schlichting, H. 1979Boundary-Layer TheoryMcGraw-HillNew York817Google Scholar
  26. Schumann, U. 1975‘Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli’J. Comp. Phys.18376404Google Scholar
  27. Stull, R. B. 1988An Introduction to Boundary Layer MeteorologyKluwer Academic PublishersDordrecht670Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.St. Anthony Falls Laboratory, Department of Civil EngineeringUniversity of MinnesotaMinneapolisU.S.A
  2. 2.National Center for Earth-Surface DynamicsU.S.A

Personalised recommendations