Advertisement

Boundary-Layer Meteorology

, Volume 117, Issue 3, pp 577–603 | Cite as

Methodological Development of the Conditional Sampling Method. Part II: Quality Control Criteria of Relaxed Eddy Accumulation Flux Measurements

  • A. K. Fotiadi
  • F. Lohou
  • A. Druilhet
  • D. Serça
  • F. Said
  • P. Laville
  • A. Brut
Article

Abstract

Determination of biosphere–atmosphere exchanges requires accurate quantification of the turbulent fluxes of energy and of a wide variety of trace gases. Relaxed Eddy Accumulation (REA) is a method that has received increasing attention in recent years, because it does not require any rapid sensor for the scalar measurements as the Eddy Correlation method (EC) does. As in all micrometeorological studies, REA measurements in the atmospheric surface layer are valid under some restrictive conditions so as to be representative of a specific ecosystem. These conditions are the homogeneity of the underlying surface, stationary and horizontally homogeneous turbulence. For most experiments these conditions are not fully satisfied. Data uncertainties can also be related to not fulfilling the method principles or to the technical characteristics of the REA system itself. In order to assess REA measurement quality, a methodological approach of data analysis is developed in this study. This methodological analysis is based on the establishment of criteria for data quality control. A set of them, deduced from the mean and turbulent flow, are called ‘Dynamic criteria’ and are designated to control the stationarity and homogeneity of the w function and the validation of Taylor’s hypothesis. A second set (‘REA operational criteria’) is designed to check the sampling process and, more precisely, the homogeneity of the negative and positive selection process throughout the sampling period. A third set of criteria (‘Chemical scalar criteria’) concerns the scalar measurements. Results of the criteria application to data measured at two different experimental sites are also presented. Cut-off limits of criteria are defined based on their statistical distribution and shown to be specific for each site. Strictness of each criterion, defined by the percentage of flagged samples, is analysed in conjunction with the meteorological conditions and atmospheric stability. It is found that flagged samples mainly correspond to neutral and stable nocturnal conditions. During daytime, nearly free convection conditions can also yield poor quality data.

Keywords

Atmospheric stability Data quality control criteria Relaxed eddy accumulation method Turbulent functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Affre, C. 1997Méthodologie de la mesure (aéroportée et au sol) des flux turbulents. Application à l’ ozone aux échelles locale et régionaleUniversité Paul SabatierToulousePh.D thesisGoogle Scholar
  2. Affre, C., Lopez, A., Carrara, A., Druilhet, A., Fontan, J. 2000‘The Analysis of Energy and Ozone Flux Data from the LANDES 94 Experiment’Atmos. Environ.34803821CrossRefGoogle Scholar
  3. Businger, J. A., Oncley, S. P. 1990‘Flux Measurement with Conditional Sampling’J. Atmos. Oceanic Technol.7349352CrossRefGoogle Scholar
  4. Delon, C. 1999Etude des échanges biosphère atmosphère en milieu équatorial. Mesure aéroportée des flux de matière et d’énergie pendant la campagne EXPRESSOUniversité Paul SabatierToulousePh.D. ThesisGoogle Scholar
  5. Delon, C., Druilhet, A., Delmas, R., Greenberg, J. 2000‘Aircraft Assessment of Trace Compound Fluxes in the Atmosphere with Relaxed Eddy Accumulation: Sensitivity to the Conditions of Selection’J. Geophys. Res.1052046120472Google Scholar
  6. Cros, B., Durand, P., Frejafon, E., Kottmeïer, C., Perros, P. E., Peuch, V.-H., Ponche, J.-L., Robin, D., Saïd, F., Toupance, G., Wortham, H. 2003‘The ESCOMPTE Programme: An Overview’Atmos. Res.69241279Google Scholar
  7. Foken, T., Wichura, B. 1996‘Tools for Quality Assessment of Surface-based Flux Measurements’Agric. For. Meteorol.7883105CrossRefGoogle Scholar
  8. Fotiadi, A. K., Lohou, F., Druilhet, A., Serça, D., Saïd, F., Laville, P., Brut, A. 2005‘Methodological Development on the Conditional Sampling Method Part I: Sensitivity to Statistical and Technical Characteristics’Boundary-Layer Meteorol.114615640CrossRefGoogle Scholar
  9. Hunt, J. C. R., Kaimal, J. C., Gaynor, J. E. 1985‘Some Observations of Turbulence Structure in Stable Layers’Quart. J. Roy. Meteorol. Soc.111793815Google Scholar
  10. Lumley, J. L., Panofsky, H. A. 1964The Structure of the Atmospheric TurbulenceInterscienceNew York239Google Scholar
  11. Mann, J., Lenschow, D. H. 1994‘Errors in Airborne Flux Measurements’J. Geophys. Res.99519526Google Scholar
  12. Wyngaard, J. C., Clifford, S. F. 1977‘Taylor’s Hypothesis and High-Frequency Turbulence Spectra’J. Atmos. Sci.34922939CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • A. K. Fotiadi
    • 1
  • F. Lohou
    • 1
  • A. Druilhet
    • 1
  • D. Serça
    • 1
  • F. Said
    • 1
  • P. Laville
    • 2
  • A. Brut
    • 3
  1. 1.Laboratoire d’Aérologie, UMR CNRS-UPS 5560ToulouseFrance
  2. 2.Unité EGC, INRAThiverval-GrignonFrance
  3. 3.CNRM-Météo-France, URA CNRSToulouseFrance

Personalised recommendations