Advertisement

Boundary-Layer Meteorology

, Volume 117, Issue 2, pp 275–300 | Cite as

‘Observations and Modelling of Cold-air Advection over Arctic Sea Ice’

  • Timo Vihma
  • Christof Lüpkes
  • Jörg Hartmann
  • Hannu Savijärvi
Article

Abstract

Aircraft observations of the atmospheric boundary layer (ABL) over Arctic sea ice were made during non-stationary conditions of cold-air advection with a cloud edge retreating through the study region. The sea-ice concentration, roughness, and ABL stratification varied in space. In the ABL heat budget, 80% of the Eulerian change in time was explained by cold-air advection and 20% by diabatic heating. With the cloud cover and inflow potential temperature profile prescribed as a function of time, the air temperature and near-surface fluxes of heat and momentum were well simulated by the applied two-dimensional mesoscale model. Model sensitivity tests demonstrated that several factors can be active in generating unstable stratification in the ABL over the Arctic sea ice in March. In this case, the upward sensible heat flux resulted from the combined effect of clouds, leads, and cold-air advection. These three factors interacted non-linearly with each other. From the point of view of ABL temperatures, the lead effect was far less important than the cloud effect, which influenced the temperature profiles via cloud-top radiative cooling and radiative heating of the snow surface. The steady-state simulations demonstrated that under overcast skies the evolution towards a deep, well-mixed ABL may take place through the merging of two mixed layers one related to mostly shear-driven surface mixing and the other to buoyancy-driven top-down mixing due to cloud-top radiative cooling.

Keywords

Arctic Cloud-top radiative cooling Cold-air advection Sea ice Surface fluxes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam, A., Curry, J. A. 1997‘Determination of Surface Turbulent Fluxes Over Leads in Arctic Sea Ice’J. Geophys. Res.10233313344CrossRefGoogle Scholar
  2. Alestalo, M., Savijärvi, H. 1985‘Mesoscale Circulations in a Hydrostatic Model: Coastal Convergence and Orographic Lifting’Tellus37A156162Google Scholar
  3. Andreas, E. L. 1987‘A Theory For the Scalar Roughness and the Scalar Transfer Coefficients Over Snow and Sea Ice’Boundary-Layer Meteorol.38159184CrossRefGoogle Scholar
  4. Andreas, E. L., Paulson, C. A., Williams, R. M., Lindsay, R. W., Businger, J. A. 1979‘The Turbulent Heat Flux from Arctic Leads’Boundary-Layer Meteorol.175791CrossRefGoogle Scholar
  5. Andreas, E. L., Fairall, C. W., Guest, P. S., and Persson, P. O. G.: 1999, ‘An Overview of the SHEBA Atmospheric Flux Program’, in Fifth Conference on Polar Meteorology and Oceanography, Dallas, TX, January 10–15, 1999, American Meteorological Society, Boston, MA, pp. 550–555 (preprint).Google Scholar
  6. Bennett, T. J.,Jr., Hunkins, K. 1986‘Atmospheric Boundary Layer Modification in the Marginal Ice Zone’J. Geophys. Res.911303313044Google Scholar
  7. Birnbaum, G., Lüpkes, C. 2002‘A new Parameterization of Surface Drag in the Marginal Sea Ice Zone’Tellus54A107123Google Scholar
  8. Bourke, R. H., Garrett, R. P. 1986‘Sea Ice Thickness Distribution in the Arctic Ocean’Cold Reg. Sci. Techn.13259280Google Scholar
  9. Brümmer, B., Thiemann, S. 2002‘The Atmospheric Boundary Layer in an Arctic Wintertime On-ice Air Flow’Boundary-Layer Meteorol.1045372Google Scholar
  10. Brümmer, B., Busack, B., Hoeber, H. 1994‘Boundary-layer Observations Over Water and Arctic Sea Ice During On-ice Air Flow’Boundary-Layer Meteorol.6875108Google Scholar
  11. Cheng, B., Vihma, T. 2002‘Modelling of Sea Ice Thermodynamics During Warm-air Advection’J. Glaciol.48425438Google Scholar
  12. Drüe, C., Heinemann, G. 2001‘Airborne Investigation of Arctic Boundary-layer Fronts over the Marginal Ice Zone of the Davis Strait’Boundary-Layer Meteorol.101261292Google Scholar
  13. Fairall, C. W., Markson, R. 1987‘Mesoscale Variations in Surface Stress, Heat Fluxes, and Drag Coefficient in the Marginal Ice zone during the 1983 Marginal Ice Zone Experiment’J. Geophys. Res.9269216932Google Scholar
  14. Freese, D. 1999Solar and Terrestrial Radiation Interaction between Arctic Sea Ice and CloudsAlfred-Wegener-Institute for Polar and Marine ResearchBremerhaven, Germany116(in German), Rep. Polar Res. 312Google Scholar
  15. Garbrecht, T., Lüpkes, C., Hartmann, J., Wolff, M. 2002‘Atmospheric Drag Coefficients over Sea Ice – Validation of a Parameterization Concept’Tellus54A205219Google Scholar
  16. Guest, P. S., Davidson, K. L. 1994‘Factors Affecting Variations of Snow Surface Temperature and Air Temperature over Sea Ice in Winter’Johannessen, O. M.Muench, R.Overland, J. E. eds. The Polar Oceans and Their Role in Shaping the Global Environment, Nansen Centennial Volume, Geophysical Monograph SeriesAmerican Geophysical UnionWashingtonDC435442Google Scholar
  17. Guest, P. S., Glendening, J. W., Davidson, K. L. 1995‘An Observational and Numerical Study of Wind Stress Variations within Marginal Ice Zones’J. Geophys. Res.1001088710904CrossRefGoogle Scholar
  18. Hartmann, J., Kottmeier, C., Raasch, S. 1997‘Roll Vortices and Boundary-layer Development during a Cold Air Outbreak’Boundary-Layer Meteorol.844565CrossRefGoogle Scholar
  19. Hartmann J., Albers F., Argentini S., Bochert A., Bonafe U., Cohrs W., Conidi A., Freese, D., Georgiadis, T., Ippoliti, A., Kaleschke, L., Lüpkes, C., Maixner, U., Mastrantonio, G., Ravegnani, F., Reuter, A., Trivellone, G., and Viola, A.: 1999, ‘Arctic Radiation and Turbulence Interaction Study (ARTIST). Rep. Polar Res. 305, Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany, 81 pp.Google Scholar
  20. Hein, P. F., Brown, R. A. 1988‘Observations of Longitudinal Roll Vortices during Arctic Cold Air Outbreaks Over Open Water’Boundary-Layer Meteorol.45177199CrossRefGoogle Scholar
  21. Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas, E. L., Guest, P. S., and Moritz, R. E.: 2002, ‘An Annual Cycle of Arctic Surface Cloud Forcing at SHEBA. J. Geophys. Res. 107, 8039, doi: 10.1029/2000JC000439.Google Scholar
  22. Jordan, R. E., Andreas, E. L., Makshtas, A. P. 1999‘Heat Budget of Snow-covered Sea Ice at North Pole 4’J. Geophys. Res.10477857806CrossRefGoogle Scholar
  23. Kottmeier, C. eds. 1996User Handbook for the Polar 2 and Polar 4 Research AircraftAlfred Wegener Institute for Polar and Marine ResearchBremerhaven, Germany46Google Scholar
  24. Lüpkes, C., Schlünzen, K. H. 1996‘Modelling the Arctic Convective Boundary-Layer with Different Turbulence Parameterizations’Boundary-Layer Meteorol.79107130Google Scholar
  25. Makshtas, A. P. 1991The Heat Budget of Arctic Ice in the WinterInt Glaciol. Soc.Cambridge, England77Google Scholar
  26. Morcrette, J. -J. 1991‘Radiation and Cloud Radiative Properties in the ECMWF Forecasting System’J. Geophys. Res.9691219132Google Scholar
  27. Olsson, P. Q., Harrington, J. Y. 2000‘Dynamics and Energetics of the Cloudy Boundary Layer in Simulations of off-Ice Flow in the Marginal Ice Zone’J. Geophys. Res.1051188911899Google Scholar
  28. Overland, J. E., Guest, P. S. 1991‘The Arctic Snow and Air Temperature Budget over Sea Ice During Winter’J. Geophys. Res.9646514662Google Scholar
  29. Overland, J. E., Turet, P. 1994‘Variability of the Atmospheric Energy Flux Across 70°N Computed from the GFDL data Set’Johannessen, O. M.Muench, R.Overland, J. E. eds. The Polar Oceans and Their Role in Shaping the Global Environment, Nansen Centennial Volume, Geophysical Monograph SeriesAmerican Geophysical UnionWashington, DC313325Google Scholar
  30. Persson, P. O. G., Fairall, C., Andreas, E. L., Guest, P. S., and Perovich, D. K.: 2002, ‘Measurements Near the Atmospheric Surface Flux Group Tower at SHEBA: Near-Surface Conditions and Surface Energy Budget. J. Geophys. Res. 107, 9045, doi: 10.1029/2000JC000705.Google Scholar
  31. Pinto, J. O. 1998‘Autumnal Mixed-phase Cloudy Boundary Layers in the Arctic’J. Atmos. Sci.5520162038CrossRefGoogle Scholar
  32. Pinto, J. O., Alam, A., Maslanik, J. A., Curry, J. A., and Stone, R. S.: 2003, ‘Surface Characteristics and Atmospheric Footprint of Springtime Arctic Leads at SHEBA’, J. Geophys. Res. 108, 8051, doi: 10.1029/2000JC000473.Google Scholar
  33. Savijärvi, H. 1991‘The United States Great Plains Diurnal ABL Variation and the Nocturnal Low-level Jet’Mon. Wea. Rev.119833840Google Scholar
  34. Savijärvi, H. 1997‘Diurnal winds around Lake Tanganyika’Quart. J. Roy. Meteorol. Soc.123901918Google Scholar
  35. Savijärvi, H., Amnell, T. 2001‘High Resolution Flight Observations and Numerical Simulations: Horizontal Variability in the Wintertime Boreal Boundary Layer’Theor. Appl. Climatol.70245252Google Scholar
  36. Savijärvi, H., Kauhanen, J. 2001‘High Resolution Numerical Simulations of Temporal and Vertical Variability in the Stable Wintertime Boreal Boundary Layer: A Case Study’Theor. Appl. Climatol.7097103Google Scholar
  37. Savijärvi, H., Arola, A., Räisänen, P. 1997‘Shortwave Optical Properties of Precipitating Waterclouds’Quart. J. Roy. Meteorol. Soc.123883899Google Scholar
  38. Savijärvi, H., Räisänen, P. 1998‘Longwave Optical Properties of Water Clouds and Rain’Tellus50111Google Scholar
  39. Schnell, R. C., Barry, R. G., Miles, M. W., Andreas, E. L., Radke, L. F., Brock, C. A., McCormick, M. P., Moore, J. L. 1989‘Lidar Detection of Leads in Arctic Sea Ice’Nature339530532CrossRefGoogle Scholar
  40. Serreze, M. C., Maslanik, J. A., Rehder, M. C., Schnell, R. C., Kahl, J. D., Andreas, E. L. 1992‘Theoretical Heights of Buoyant Convection Above Open Leads in the Winter Arctic Pack Ice Cover’J. Geophys. Res.9794119422CrossRefGoogle Scholar
  41. Sturm, M., Perovich, D. K., and Holmgren, J.: 2002, ‘Thermal Conductivity and Heat Transfer Through the Snow on the Ice of the Beaufort Sea’, J. Geophys. Res. 107, doi: 10.1029/2000JC000409.Google Scholar
  42. Uttal, T.,  et al. 2002‘The Surface Heat Budget of the Arctic Ocean’Bull. Amer. Meteorol. Soc.83255276Google Scholar
  43. Vihma, T. 1995‘Subgrid Parameterization of Surface Heat and Momentum Fluxes over Polar Oceans’J. Geophys. Res.1002262522646CrossRefGoogle Scholar
  44. Vihma, T., Brümmer, B. 2002‘Observations and Modelling of On-Ice and Off-ice Air Flows over the Northern Baltic Sea’Boundary-Layer Meteorol.103127CrossRefGoogle Scholar
  45. Vihma, T., Kottmeier, C. 2000‘A Modelling Approach for Optimizing Flight Patterns in Airborne Meteorological Measurements’Boundary-Layer Meteorol.95211230CrossRefGoogle Scholar
  46. Vihma, T., Hartmann, J., Lüpkes, C. 2003‘A Case Study of an On-ice Air Flow over the Arctic Marginal Sea Ice Zone’Boundary-Layer Meteorol.107189217CrossRefGoogle Scholar
  47. Wang, S., Wang, Q., Jordan, R. E., Persson, P. O. G. 2001‘Interactions among Longwave Radiation of Clouds, Turbulence, and Snow Surface Temperature in the Arctic: a model sensitivity study’J. Geophys. Res.1061532315333Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Timo Vihma
    • 1
  • Christof Lüpkes
    • 2
  • Jörg Hartmann
    • 2
  • Hannu Savijärvi
    • 3
  1. 1.Finnish Institute of Marine ResearchHelsinkiFinland
  2. 2.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  3. 3.Division of Atmospheric Sciences, Department of Physical SciencesUniversity of HelsinkiFinland

Personalised recommendations