Boundary-Layer Meteorology

, Volume 115, Issue 3, pp 453–471 | Cite as

Sensitivity Tests of an Energy Balance Model to Choice of Stability Functions and Measurement Accuracy



Sensible (H) and latent (L v E) heat fluxes are obtained by a combined energy budget – similarity model applied to observations from Melle in Belgium and Cabauw in The Netherlands. The sensitivity to both the stability functions and the accuracy of input data is investigated. In a first step, fluxes are calculated for a selection of stability functions and compared to values obtained with pre-defined (reference) functions. For the diurnal fluxes higher than 10 W m−2 in 1996 at Melle, the root-mean-square rmsreaches 9 W m−2 for H and 6 W m−2 for L v E, depending on the chosen functions. A lesser sensitivity is obtained at Cabauw and can be explained by lower absolute values of the stability parameter ζ (L involving the Obukhov length) mainly induced by higher mean wind speeds. Different stability bins are also considered. It is concluded that a more accurate assessment of the stability functions is already desirable for absolute values of L above a few metres. These values are not so scarce at Melle and should be captured in the future by an increasing number of new developing long-term measurement stations. In a second step, a statistical approach is proposed with errors depicted by both systematic biases and random fluctuations represented by means of Gaussian distributions. The results show that very accurate measurements are needed in order to maintain the mean annual value of the bias and rms below 5–10 W m−2, and thus to allow the discrimination between the sensitivity to errors on input data and to the stability functions selection.


Monin–Obukhov similarity theory Profile method Sensible and latent heat fluxes Sensitivity test Stability functions Surface layer. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, H. 1996Sensitivity for Correlated Input Variables and Propagated Errors in Evapotranspiration Estimates from a Humid RegionWater Resour. Res.3225072516Google Scholar
  2. Andreas, E, Hicks, B.B. 2002Comments on “Critical Test of the Validity of Monin–obukhov Similarity During Convective Conditions”J. Atmos. Sci.5926052614Google Scholar
  3. Beljaars, A.C, Bosveld, F.C. 1997Cabauw Data for the Validation of Land Surface Parameterization SchemesJ. Climate.1011721193Google Scholar
  4. Beljaars, A.C.M, Holtslag, A.A.M. 1991Flux Parameterization over Land Surfaces for Atmospheric ModelsJ. Appl. Meteorol.30327341Google Scholar
  5. Berkowicz, R, Prahm, L.P. 1982Evaluation of the Profile Method for Estimation of Surface Fluxes of Momentum and HeatAtmos. Environ.1628092819Google Scholar
  6. Brutsaert, W. 1992Stability Correction Functions for the Mean Wind Speed and Temperature in the Unstable Surface LayerGeophys. Res. Lett.19469472Google Scholar
  7. Brutsaert, W.H. 1982Evaporation into the Atmosphere – Theory, History and ApplicationsD. Reidel Publishing CompanyDordrecht, Holland299Google Scholar
  8. Brutsaert, W. 1999Aspects of Bulk Atmospheric Boundary Layer Similarity under Free-convective ConditionsRev. Geophys.37439451Google Scholar
  9. Businger, J.A., Wyngaard, J.C., Izumi, Y, Bradley, E.F. 1971Flux–profile Relationships in the Atmospheric Surface LayerJ. Atmos. Sci.28181189Google Scholar
  10. Dyer, A.J. 1974A Review of Flux–Profile RelationshipsBoundary-Layer Meteorol.7363372Google Scholar
  11. Goutorbe, J.-P. 1991A Critical Assessment of the Samer Network AccuracySchmugge, T.J.André, J.-C. eds. Land Surface Evaporation – Measurement and Parametrization.Springer-VerlagNew York171182Google Scholar
  12. Grachev, A.A., Fairall, C.W, Bradley, E.F. 2000Convective Profile Constants RevisitedBoundary-Layer Meteorol.94495515Google Scholar
  13. Hicks, B.B. 1978Some Limitations of Dimensional Analysis and Power LawsBoundary-Layer Meteorol.14567569Google Scholar
  14. Holtslag, A.A.M, Bruin, H.A.R. 1988Applied Modelling of the Nighttime Surface Energy Balance over LandJ Appl. Meteorol.27689704Google Scholar
  15. Högström, U. 1988Non-dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-evaluationBoundary-Layer Meteorol.425578Google Scholar
  16. Johansson, C., Smedman, A.-S., Högström, U., Brasseur, J.G, Khanna, S. 2001Critical Test of the Validity of the Monin–Obukhov Similarity during Convective ConditionsJ. Atmos. Sci.5815491566Google Scholar
  17. Johansson, C., Smedman, A.-S., Högström, U., Brasseur, J.G. 2002ReplyJ. Atmos. Sci.5926082614Google Scholar
  18. Kader, B.A, Perepelkin, V.G. 1989Effect of Unstable Stratification on the Wind Speed and Temperature Profiles in the Surface Layer’, Izv Akad. Nauk. SSSRFiz. Atmos. Okeana.25583588Google Scholar
  19. Kader, B.A, Yaglom, A.M. 1990Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary LayersJ. Fluid Mech.212637662MathSciNetGoogle Scholar
  20. Mahrt, L. 1999Stratified Atmospheric Boundary LayersBoundary-Layer Meteorol.90375396Google Scholar
  21. Mahrt, L., Sun, J., Blumen, W., Delany, T, Oncley, S. 1998Nocturnal Boundary-Layer RegimesBoundary-Layer Meteorol.88255278Google Scholar
  22. Monin A.S, Obukhov A.M. (1954). Basic Laws of Turbulent Mixing in the Ground Layer of the Atmosphere’ (in Russian): Trudy Geophiz. Inst. Akad. Nauk SSSR 24(151): 163–187 (German translation in Sammelband zur Statistischen Theorie der Turbulenz, H. Goering (ed.): 1958, Akademie Verlag, Berlin, pp. 199–226)Google Scholar
  23. Nash, J.E, Suttcliffe, J.V. 1970River Flow Forecasting through Conceptual Models. Part I – A Discussion of Principles.J. Hydrol.10282290Google Scholar
  24. Obukhov, A.M. 1946Turbulence in an Atmosphere with Non Uniform Temperature (in Russian): Trudy. Instit. Teoret. Geophiz., Akad. Nauk. SSSR, N°1 English translation inBoundary-Layer Meteorol2729Google Scholar
  25. Panofsky, H.A. 1963Determination of Stress from Wind and Temperature MeasurementsQuart. J. Roy. Meteorol. Soc.898594Google Scholar
  26. Stricker, H, Brutsaert, W. 1978Actual Evapotranspiration over a Summer Period in the “Hupselse Catchment”J. Hydrol.39139157Google Scholar
  27. Ulden, A.P, Wieringa, J. 1996Atmospheric Boundary Layer Research at CabauwBoundary-Layer Meteorol783969Google Scholar
  28. Weidinger, T., Pinto, J, Horváth, L. 2000Effects of Uncertainties in Universal Functions, Roughness Length, and Displacement Height on the Calculation of Surface Layer FluxesMeteorol. Zeitschrift.9139154Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Royal Meteorological InstituteBrusselsBelgium

Personalised recommendations