Advertisement

Boundary-Layer Meteorology

, Volume 118, Issue 2, pp 247–272 | Cite as

An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer

  • Robert J. Beare
  • Malcolm K. Macvean
  • Albert A. M. Holtslag
  • Joan Cuxart
  • Igor Esau
  • Jean-Christophe Golaz
  • Maria A. Jimenez
  • Marat Khairoutdinov
  • Branko Kosovic
  • David Lewellen
  • Thomas S. Lund
  • Julie K. Lundquist
  • Anne Mccabe
  • Arnold F. Moene
  • Yign Noh
  • Siegfried Raasch
  • Peter Sullivan
Article

Abstract

Results are presented from the first intercomparison of large-eddy simulation (LES) models for the stable boundary layer (SBL), as part of the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study initiative. A moderately stable case is used, based on Arctic observations. All models produce successful simulations, in as much as they generate resolved turbulence and reflect many of the results from local scaling theory and observations. Simulations performed at 1-m and 2-m resolution show only small changes in the mean profiles compared to coarser resolutions. Also, sensitivity to subgrid models for individual models highlights their importance in SBL simulation at moderate resolution (6.25 m). Stability functions are derived from the LES using typical mixing lengths used in numerical weather prediction (NWP) and climate models. The functions have smaller values than those used in NWP. There is also support for the use of K-profile similarity in parametrizations. Thus, the results provide improved understanding and motivate future developments of the parametrization of the SBL.

Keywords

Large-eddy simulation Parametrization Resolution Stable boundary layer Subgrid model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andren A. (1995). ‘The Structure of Stably Stratified Atmospheric Boundary Layes: A Large-Eddy Simulation Study’. Quart. J. Roy. Meterol. Soc. 121: 961–985CrossRefGoogle Scholar
  2. Beare R.J. and MacVean M.K. (2004). ‘Resolution Sensitivity and Scaling of Large-Eddy Simulations of the Stable Boundary Layer’. Boundary-Layer Meteorol. 112: 257–281CrossRefGoogle Scholar
  3. Beljaars A.C.M. and Holtslag A.A.M. (1991). Flux Parameterization Over Land Surfaces for Atmospheric Models’. J. Appl. Meteorol 30: 327–341CrossRefGoogle Scholar
  4. Brost R.A. and Wyngaard J.C. (1978). ‘A Model Study of the Stably Stratified Planetary Boundary Layer’. J. Atmos. Sci 35: 1427–1440CrossRefGoogle Scholar
  5. Brown A.R. (1999). ‘The Sensitivity of Large-Eddy Simulations of Shallow Cumulus Convection to Resolution and Subgrid Model’. Quart. J. Roy. Meteorol. Soc 125: 469–482CrossRefGoogle Scholar
  6. Brown A.R., Cederwall R.T., Chlond A., Duynkerke P., Golaz J.-C., Khairoutdinov M., Lewellen D.C., Lock A.P., MacVean M.K., Moeng C.-H., Neggers R.A.J., Siebesma A.P. and Stevens B. (2002). ‘Large-Eddy Simulation of the Diurnal Cycle of Shallow Cumulus Convection Over Land’. Quart. J. Roy. Meteorol. Soc. 128: 1075–1093CrossRefGoogle Scholar
  7. Brown A.R., Derbyshire S.H. and Mason P.J. (1994). ‘Large-Eddy Simulation of Stable Atmospheric Boundary Layers with a Revised Stochastic Subgrid Model’. Quart. J. Roy. Meteorol. Soc. 120: 1485–1512CrossRefGoogle Scholar
  8. Cuijpers J.W.M. and Duynkerke P.G. (1993). ‘Large Eddy Simulation of Trade Wind Cumulus Clouds’. J. Atmos. Sci. 50: 3894–3908CrossRefGoogle Scholar
  9. Cuxart J., Bougeault P. and Redelsperger J.L. (2000). ‘A Turbulence Scheme Allowing for Mesoscale and Large-Eddy Simulations’. Quart. J. Roy. Meteorol. Soc. 126: 1–30CrossRefGoogle Scholar
  10. Dosio A., Holtslag A.A.M., Builtjes P.J.H. and Arellano J.V.G. (2003). ‘Dispersion of a Passive Tracer in Buoyancy- and Shear-Driven Boundary Layers’. J. Appl. Meteorol. 42: 1116–1130CrossRefGoogle Scholar
  11. Esau, I.: 2004, ‘Simulation of Ekman Boundary Layers by Large Eddy Model with Dynamic Mixed Subfilter Closure’, J. Environ. Fluid Mech. 4, in pressGoogle Scholar
  12. Galmarini S., Beets C., Duynkerke P.G. and Arellano J.V.-G. (1998). ‘Stable Nocturnal Boundary Layers: a Comparison of One-dimensional and Large-Eddy Simulation Models’. Boundary-Layer Meteorol. 88: 181–210CrossRefGoogle Scholar
  13. Grant A.L.M. (1997). ‘An Observational Study of the Evening Transition Boundary-layer’. Quart. J. Roy. Meteorol. Soc. 123: 657–677CrossRefGoogle Scholar
  14. Grimsdell A.W. and Angevine W.M. (2002). ‘Observations of the Afternoon Transition of the Convective Boundary Layer’. J. Appl. Meteorol. 41: 3–11CrossRefGoogle Scholar
  15. Hodur R.M. (1997). ‘The Naval Research Laboratory’s Coupled Ocean/Atmosphere MesoScale Prediction System(COAMPS)’. Mon. Wea. Rev. 117: 1414–1430CrossRefGoogle Scholar
  16. Holtslag, A. A. M.: 1998, ‘Modelling Atmospheric Boundary Layers’, in A. A. M. Holtslag and P. G. Duynkerke, (eds.), Clear and Cloudy Boundary Layers, Proceedings of the Academy colloquim held in Amsterdam, August 1997, Chapter 4, pp. 85–110Google Scholar
  17. Holtslag A.A.M. (2003). ‘GABLS Initiates Intercomparison for Stable Boundary Layer Case’. GEWEX News 13: 7–8Google Scholar
  18. Holtslag A.A.M. and Nieuwstadt F.T.M. (1986). ‘Scaling the Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 36: 201–209CrossRefGoogle Scholar
  19. Khairoutdinov M.F. and Randall D.A. (2003). ‘Cloud Resolving Modeling of the ARM Summer 1997 IOP.: Model Formulation, Results, Uncertainties and Sensitivities’. J. Atmos. Sci. 60: 607–625CrossRefGoogle Scholar
  20. King J.C., Connolley W.M. and Derbyshire S.H. (2001). ‘Sensitivity of Modelled Antarctic Climate to Surface and Boundary-Layer Flux Parametrizations’. Quart. J. Roy. Meteorol. Soc. 127: 779–794CrossRefGoogle Scholar
  21. Koren B. (1993). ‘A Robust Upwind Discretization Method for Advection, Diffusion and Source Terms’. Notes Numer. Fluid Mech. 45: 117–138Google Scholar
  22. Kosovic B. (1997). ‘Subgrid-scale Modelling for the Large-Eddy Simulation of High-Reynolds-Number Boundary Layers’. J. Fluid Mech. 336: 151–182CrossRefGoogle Scholar
  23. Kosovic B. and Curry J.A. (2000). ‘A Large Eddy Simulation Study of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer’. J. Atmos. Sci. 57: 1052–1068CrossRefGoogle Scholar
  24. Lewellen D.C. and Lewellen W.S. (1998). ‘Large-Eddy Boundary Layer Entrainment’. J. Atmos. Sci. 55: 2645–2665CrossRefGoogle Scholar
  25. Lewellen D.C., Lewellen W.S. and Xia J. (2000). ‘The Influence of a Local Swirl Ratio on Tornado Intensification near the Surface’. J. Atmos. Sci. 57: 527–544CrossRefGoogle Scholar
  26. Lilly D.K. (1967). ‘The Representation of Small-Scale Turbulence in Numerical Simulation Experiments’, Proc, IBM Scientific Computing Symp. Environ. Sci, pp. 195–210Google Scholar
  27. Louis J.F. (1979). ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’. Boundary-Layer Meteorol. 17: 187–202CrossRefGoogle Scholar
  28. Mahrt L. (1987). ‘Grid-Averaged Surface Fluxes’. Mon. Wea. Rev. 115: 1550–1560CrossRefGoogle Scholar
  29. Mason P.J. (1994). ‘Large-Eddy Simulation: A Critical Review of the Technique’. Quart. J. Roy. Meteorol. Soc. 120: 1–26CrossRefGoogle Scholar
  30. Mason P.J. and Derbyshire S.H. (1990). ‘Large-Eddy Simulation of the Stably-Stratified Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 53: 117–162CrossRefGoogle Scholar
  31. Moeng C.-H., Cotton W., Stevens B., Bretherton C., Rand H., Chlond A., Khairoutdinov M., Krueger S., Lewellen W., MacVean M., Pasquier J., Siebesma A. and Sykes R. (1996). ‘Simulation of a Stratocumulus-Topped Planetary Boundary Layer: Intercomparison among Different Numerical Codes’. Bull. Amer. Meteorol. Soc. 77: 261–278CrossRefGoogle Scholar
  32. Nieuwstadt F.T.M. (1984). ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’. J. Atmos. Sci. 41: 2202–2216CrossRefGoogle Scholar
  33. Nieuwstadt, F. T. M.: 1985, ‘A Model for the Stationary, Stable Boundary Layer’, in J. C. R. Hunt (ed.), Turbulence and Diffusion in Stable Environments, Oxford University Press, pp. 149–179Google Scholar
  34. Persson P.O.G., Fairall C.W., Andreas E.L., Guest P.S. and Perovich D.K. (2002). ‘Measurements Near the Atmospheric Surface Flux Group Tower at SHEBA: Near Surface Conditions and Surface Energy Budget’. J. Geophys. Res. 107(C10): 8045CrossRefGoogle Scholar
  35. Poulos G.S., Blumen W., Fritts D.C., Lundquist J.K., Sun J., Burns S.P., Nappo C., Banta R., Newsom R., Cuxart J., Terradellas E., Balsley B. and Jensen M. (2002). ‘CASES-99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer’. Bull. Amer. Meteorol. Soc. 83: 555–581CrossRefGoogle Scholar
  36. Raasch S. and Etling D. (1991). ‘Numerical Simulations of Rotating Turbulent Thermal Convection’. Beitr. Phys. Atmos. 64: 185–199Google Scholar
  37. Raasch S. and Schröter M. (2001). ‘PALM – A Large-Eddy Simulation Model Performing on Massively Parallel Computers’. Meteorol. Z. 10: 363–372CrossRefGoogle Scholar
  38. Saiki E.M., Moeng C.-H. and Sullivan P.P. (2000). ‘Large-Eddy Simulation of the Stably Stratified Planetary Boundary Layer’. Boundary-Layer Meteorol. 95: 1–30CrossRefGoogle Scholar
  39. Sullivan P.P., McWilliams J.C. and Moeng C.-H. (1994). ‘A Subgrid-Scale Model for Large-Eddy Simulation of Planetary Boundary-Layer Flows’. Boundary-Layer Meteorol. 71: 247–276CrossRefGoogle Scholar
  40. Troen I.B. and Mahrt L. (1986). ‘A Simple Model of the Atmospheric Boundary Layers: Sensitivity to Surface Evaporation’. Boundary-Layer Meteorol. 37: 129–148CrossRefGoogle Scholar
  41. Van de Wiel B.J.H., Moene A.F., Hartogensis O.K., Holtstlag A.A.M. and Bruin H.A.R. (2003). ‘Intermittent Turbulence in the Stable Boundary Layer Over Land Part III: A Classification for Observations During CASES-99’. J. Atmos. Sci. 60: 2509–2522CrossRefGoogle Scholar
  42. Vogelezang D.H.P. and Holtslag A.A.M. (1996). ‘Evaluation and Model Impacts of Alternative Boundary-Layer Height Formulations’. Boundary-Layer Meteorol. 81: 245–269CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Robert J. Beare
    • 1
  • Malcolm K. Macvean
    • 1
  • Albert A. M. Holtslag
    • 2
  • Joan Cuxart
    • 3
  • Igor Esau
    • 4
  • Jean-Christophe Golaz
    • 5
  • Maria A. Jimenez
    • 3
  • Marat Khairoutdinov
    • 6
  • Branko Kosovic
    • 7
  • David Lewellen
    • 8
  • Thomas S. Lund
    • 9
  • Julie K. Lundquist
    • 7
  • Anne Mccabe
    • 1
  • Arnold F. Moene
    • 2
  • Yign Noh
    • 10
  • Siegfried Raasch
    • 11
  • Peter Sullivan
    • 12
  1. 1.Met OfficeU.K
  2. 2.Wageningen UniversityThe Netherlands
  3. 3.Universitat de les Illes BalearsSpain
  4. 4.Nansen Environmental and Remote Sensing CenterNorway
  5. 5.Naval Research LaboratoryNational Research CouncilMontereyU.S.A
  6. 6.Colorado State UniversityU.S.A
  7. 7.Lawrence Livermore National LaboratoryU.S.A
  8. 8.West Virginia UniversityU.S.A
  9. 9.Colorado Research AssociatesU.S.A
  10. 10.Yonsei UniversitySouth Korea
  11. 11.University of HannoverGermany
  12. 12.National Center for Atmospheric ResearchU.S.A

Personalised recommendations