Boundary-Layer Meteorology

, Volume 115, Issue 1, pp 105–130 | Cite as

Utility of Assimilating Surface Radiometric Temperature Observations for Evaporative Fraction and Heat Transfer Coefficient Retrieval

  • Wade T. Crow
  • William P. Kustas


Recent advances in land data assimilation have yielded variational smoother techniques designed to solve the surface energy balance based on remote observations of surface radiometric temperature. These approaches have a number of potential advantages over existing diagnostic models, including the ability to make energy flux predictions between observation times and reduced requirements for ancillary parameter estimation. Here, the performance of a recently developed variational smoother approach is examined in detail over a range of vegetative and hydrological conditions in the southern U.S.A. during the middle part of the growing season. Smoother results are compared with flux tower observations and energy balance predictions obtained from the two-source energy balance model (TSM). The variational approach demonstrates promise for flux retrievals at dry and lightly vegetated sites. However, results suggest that the simultaneous retrieval of both evaporative fraction and turbulent transfer coefficients by the variational approach will be difficult for wet and/or heavily vegetated land surfaces. Additional land surface information (e.g. leaf area index (L AI) or the rough specification of evaporative fraction bounds) will be required to ensure robust predictions under such conditions. The single-source nature of the variational approach also hampers the physical interpretation of turbulent transfer coefficient retrievals. Intercomparisons between energy flux predictions from the variational approach and the purely diagnostic TSM demonstrate that the relative accuracy of each approach is contingent on surface conditions and the accuracy with which L AI values required by the TSM can be estimated.


data assimilation surface energy fluxes surface radiometric temperature turbulent transfer coefficients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P., Mecikalski, J.R. 1997‘A Two-Source Time-Integrated Model for Estimating Surface Fluxes from Thermal Infrared Satellite Observations’Remote Sens. Environ60195216Google Scholar
  2. Bastiaansen, W., Menenti, M., Feddes, R., Holtslag, A. 1998‘A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL) 1. Formulation’J. Hydrol212–213198212Google Scholar
  3. Betts, A. K., Ball, J. H. 1998‘FIFE Surface Climate and Site-Averaged Dataset 1987–1989’J. Atmos. Sci5510911108Google Scholar
  4. Boni, G. D., Castelli, F., Entekhabi, D. 2001‘Sampling Strategies and Assimilation of Ground Temperature for the Estimation of Surface Energy Fluxes’IEEE Trans. Geosci. Rem. Sens39165172Google Scholar
  5. Boni, G. D., Entekhabi, D., Castelli, F. 2000‘Land Data Assimilation with Satellite Measurements for the Estimation of Surface Energy Balance Components and Surface Control of Evaporation’Water Resour. Res3717131722Google Scholar
  6. Caparrini, F., Castelli, F., Entekhabi, D. 2003‘Mapping of Land-Atmosphere Heat Fluxes and Surface Parameters with Remote Sensing Data’Boundary-Layer Meteorol107605633Google Scholar
  7. Caparrini, F., Castelli, F., Entekhabi, D. 2004‘Estimation of Surface Turbulent Fluxes through Assimilation of Radiometric Surface Temperature Sequences’J. Hydrometeorol5145159Google Scholar
  8. Castelli, F., Entekhabi, D., Caporali, E. 1999‘Estimation of Surface Heat Flux and an Index of Soil Moisture Using Adjoint-State Surface Energy Balance’Water Resour. Res3531153125Google Scholar
  9. Choudhury, B. J. 1987‘Relationships between Vegetation Indices, Radiation Absorption, and Net Photosynthesis Evaluated by a Sensitivity Analysis’Remote Sens. Environ22209233Google Scholar
  10. Choudhury, B. J., Ahmed, N. U., Idso, S. B., Reginato, R. J., Daughtry, C. 1994‘Relations between Evaporation Coefficients and Vegetation Indices Studied by Model Simulation’Remote Sens. Environ50117Google Scholar
  11. Crago, R. D., Brutsaert, W. 1996‘Daytime Evaporation and Self-Preservation of the Evaporative Fraction and the Bowen Ratio’J. Hydrol180173194Google Scholar
  12. Diak, G. R., Mecikalski, J. R., Anderson, M. C., Norman, J. M., Kustas, W. P., Torn, R. D., DeWolf, R.L. 2004‘Estimating Land Surface Energy Budgets from Space: Review and Current Efforts at the University of Wisconsin-Madison and USDA-ARS’Bull. Amer. Meteorol. Soc856578Google Scholar
  13. French, A. N., Schmugge, T. J., Kustas, W. P., Brubaker, K. L., and Prueger, J.: 2003, ‘Surface Energy Fluxes over El Reno, Oklahoma Using High-Resolution Remotely Sensed Data’, Water Resour. Res. 39, doi:10.1029/2002WR001734. Google Scholar
  14. Garratt, J. R., Hicks, B. B. 1973‘Momentum, Heat, and Water Vapour Transfer to and from Natural and Artificial Surfaces’Quart. J. Roy. Meteorol. Soc992543525446Google Scholar
  15. Hollinger, S. E. and Daughtry, C. S. T.: 1999, Southern Great Plains 1997 Hydrological Experiment: Vegetation Sampling and Data Documentation, Technical Report to the United States Department of Agricultural on Contract AG-58-1270-7-043.Google Scholar
  16. Jiang, L., Islam, S. 2001‘Estimation of Surface Evaporation Map over Southern Great Plains Using Remote Sensing Data’Water Resour. Res37329340Google Scholar
  17. Kustas, W. P., Goodrich, D. C. 1994‘Preface to MONSOON’90 Special Issue’Water Resour. Res3012111225Google Scholar
  18. Kustas, W. P., Norman, J. M. 1999a‘Reply to Comments about the Basic Equations of Dual-Source Vegetation-Atmosphere Transfer Models’Agric. For. Meteorol.94275278Google Scholar
  19. Kustas, W. P., Norman, J. M. 1999b‘Evaluation of Soil and Vegetation Heat Flux Predictions Using a Simple Two-Source Model with Radiometric Temperature for Partial Canopy Cover’Agric. For. Meteorol.941329Google Scholar
  20. Kustas, W. P., Norman, J. M. 2000a‘Evaluating the Effects of Subpixel Heterogeneity on Pixel Average Fluxes’Remote Sens. Environ.74327342Google Scholar
  21. Kustas, W. P., Norman, J. M. 2000b‘A Two-source Energy Balance Approach Using Directional Radiometric Temperature Observations for Sparse Canopy Covered Surfaces’Agron. J.92847854CrossRefGoogle Scholar
  22. Kustas, W. P, Blanford, J. H., Stannard, D. I., Daughtry, C. S. T., Nichols, W. D., Weltz, M. A. 1994‘Local Energy Flux Estimates for Unstable Conditions Using Variance Data in Semi-Arid Rangelands’Water Resour. Res3013511361Google Scholar
  23. Kustas, W. P., Norman, J. M., Schmugge, T. J., Anderson, M.C. 2004‘Mapping Surface Energy Fluxes with Radiometric Temperature’Quattrochi, D.Luvall, J. eds. Thermal Remote Sensing in Land Surface ProcessesTaylor and FrancisNew York205253Google Scholar
  24. Kustas, W. P., Zhan, X., Schmugge, T. J. 1998‘Combining Optical and Microwave Remote Sensing for Mapping Energy Fluxes in a Semiarid Watershed’Remote Sens. Environ64116131Google Scholar
  25. Norman, J. M., Kustas, W. P., Humes, K. S. 1995‘A Two-source Approach for Estimating Soil and Vegetation Energy Fluxes in Observations of Directional Radiometric Surface Temperature’Agric. For. Meteorol77263293Google Scholar
  26. Priestley, C. H. B., Taylor, R. J. 1972‘On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters’Mon. Wea. Rev.1008192Google Scholar
  27. Sellers, P. J., Hall, F. G., Asrar, G., Strebel, D. E., Murphy, R.E. 1992‘An Overview of the First International Satellite Land Surface Climatology Project (ISLCP) Field Experiment (FIFE)’J. Geophys. Res971834518371CrossRefGoogle Scholar
  28. Shuttleworth, W. J., Gurney, R. J. 1990‘The Theoretical Relationship between Foliage Temperature and Canopy Resistance in Sparse Crops’Quart. J. Roy. Meteorol. Soc116497519Google Scholar
  29. Shuttleworth, W. J., Wallace, J. S. 1985‘Evaporation from Sparse Crops–An Energy Combination Theory’Quart. J. Roy. Meteorol. Soc111839855Google Scholar
  30. Su, Z. 2002‘The Surface Energy Balance System (SEBS) for Estimation of Turbulent Heat Fluxes’Hydrol. Earth Syst. Sci68599CrossRefGoogle Scholar
  31. Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., Prueger, J. H., Starks, P. J., Wesley, M. L. 2000‘Correcting Eddy-Covariance Flux Estimates over a Grassland’Agric. For. Meteorol103279300Google Scholar
  32. Verma, S., Kim, J., Clement, R. J. 1992‘MomentumWater Vapour, and Carbon Dioxide Exchange at a Centrally Located Prairie Site during FIFE’, J. Geophys. Res971862918639Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.USDA ARS, Hydrology and Remote Sensing LaboratoryBeltsvilleU.S.A.

Personalised recommendations