Boundary-Layer Meteorology

, Volume 116, Issue 2, pp 313–330 | Cite as

Boundary-Layer Adjustment Over Small-Scale Changes of Surface Heat Flux



Four months of eddy correlation data collected over a grass field and a nearby sage brush community are analyzed to examine the adjustment of the boundary-layer structure as it flows from the heated brush to the snow-covered grass. The grass site includes a 34-m tower with seven levels of eddy correlation data. The midday heat flux over the snow-covered grass and bare ground surfaces is often downward particularly with melting conditions, while the corresponding heat flux over the brush is almost always upward. For most of these cases, a stable internal boundary layer over the snow is well defined in terms of vertical profiles of the buoyancy flux over the snow-covered grass. The stable internal boundary layer is generally embedded within a deeper layer of flux divergence corresponding to increasing upward heat flux with height above the internal boundary layer. With thin snow cover, the surface heat flux over the grass is weak upward due to heating of grass protruding above the snow so that the flow adjusts to a decrease of the upward surface heat flux in the downwind direction. This common case of an adjusting boundary layer contrasts with the formation of an internal boundary layer due to a change of sign of the surface heat in flux the downwind direction. The adjustment of the boundary layer to the decrease of the surface heat flux leads to vertical divergence of the upward heat flux in contrast to the usual heated boundary layer over homogeneous surfaces. The consequences of the cooling due to the vertical divergence of the heat flux are discussed in terms of the heat budget of the adjusting and internal boundary layers.


Advection Heterogeneity Internal boundary layer Snow cover Stable boundary layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banta, R., Newsom, R., Lundquist, J., Pichugina, Y., Coulter, R., Mahrt, L. 2002‘Nocturnal Low-Level Jet Characteristics over Kansas During CASES-99’Boundary-Layer Meteorol.105221252CrossRefGoogle Scholar
  2. De Bruin, H. A. R., Bink, N. J., and Kroon L. J. M.: 1991, ‘Fluxes in the Surface Layer Under Advective Conditions’, in [T. J. Schmugge and J. -C. Andre (eds),] Land Surface Evaporation; Measurement and Parameterization, Springer Verlag, pp. 157–169.Google Scholar
  3. Garratt, J. R. 1987‘The Stably Stratified Internal Boundary Layer for Steady and Diurnally Varying Offshore Flow’Boundary-Layer Meteorol.38369394CrossRefGoogle Scholar
  4. Garratt, J. R. 1990‘The Internal Boundary Layer – a Review’Boundary-Layer Meteorol.50171203CrossRefGoogle Scholar
  5. Garratt, J. R. 1992The Atmospheric Boundary LayerCambridge University PressU.K.316Google Scholar
  6. Garratt, J. R., Ryan, B. F. 1989‘The Structure of the Stably Stratified Internal Boundary Layer in Offshore Flow Over the Sea’Boundary-Layer Meteorol.471740CrossRefGoogle Scholar
  7. Ha, K. -J., Mahrt, L. 2003‘Radiative and Turbulent Fluxes in the Nocturnal Boundary Layer’Tellus55317327CrossRefGoogle Scholar
  8. Laubach, J., McNaughton, K., Wilson, J. 2000‘Heat and Water Vapour Diffusivities Near the Base of a Disturbed Internal Boundary Layer’Boundary-Layer Meteorol.942363CrossRefGoogle Scholar
  9. Mahrt, L. 2000‘Surface Heterogeneity and Vertical Structure of the Boundary Layer’Boundary-Layer Meteorol.963362CrossRefGoogle Scholar
  10. Mahrt, L., Vickers, D. 2002‘Contrasting Vertical Structures of Nocturnal Boundary Layers’Boundary-Layer Meteorol.105351363CrossRefGoogle Scholar
  11. Melas, D. 1989‘The Temperature Structure in a Stably Stratified Internal Boundary Layer Over a Cold Sea’Boundary-Layer Meteorol.48361375CrossRefGoogle Scholar
  12. Raynor, G. S., Sethuraman, S., Brown, R. M. 1979‘Formation and Characteristics of Coastal Internal Boundary Layers During Onshore Flows’Boundary-Layer Meteorol.16487514Google Scholar
  13. Rogers, D. P., Johnson, D. W., Friehe, C. A. 1995‘The Stable Internal Boundary Layer Over a Coastal Sea. Part I: Airborne measurements of the mean and turbulence structure’J. Atmos. Sci.52667683CrossRefGoogle Scholar
  14. Savelyev, S., Taylor, P. A. 2001‘Notes on an Internal Boundary-Layer Height Formulation’Boundary-Layer Meteorol101293301CrossRefGoogle Scholar
  15. Schmid, H. P., Bünzli, D. B. 1995‘The Influence of Surface Texture on the Effective Roughness Length’Quart. J. Roy. Meteorol. Soc.121121CrossRefGoogle Scholar
  16. Smedman, A.-S, Bergström, H., Grisogono, B. 1997‘Evolution of Stable Internal Boundary Layers Over a Cold Sea’J. Geophys. Res.10210911099CrossRefGoogle Scholar
  17. Sun, J., Burns, S., Delany, A., Horst, T., Oncley, S., Lenschow, D. 2003‘Heat Balance in Nocturnal Boundary Layers’J. Appl. Meteorol.4216491666CrossRefGoogle Scholar
  18. Vickers, D., Mahrt, L. 1997‘Quality Control and Flux Sampling Problems for Tower and Aircraft Data’J. Atm. and Oc. Tech.14512526CrossRefGoogle Scholar
  19. Vickers, D., Mahrt, L., Sun, J., Crawford, T. 2001‘Structure of Offshore Flow’Mon. Wea. Rev.12912511258CrossRefGoogle Scholar
  20. Wood, N., Mason, P. 1991‘The Influence of Static Stability on the Effective Roughness Lengths for Momentum and Heat Transfer’Quart. J. Roy. Meteorol. Soc.11710251056CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.College of Oceanic and Atmospheric SciencesOregon State UniversityCorvallisUSA

Personalised recommendations