Advertisement

Journal of Inherited Metabolic Disease

, Volume 41, Issue 3, pp 329–336 | Cite as

The role of the Human Metabolome Database in inborn errors of metabolism

  • Rupasri Mandal
  • Danuta Chamot
  • David S. Wishart
Metabolomics

Abstract

Metabolomics holds considerable promise to advance our understanding of human disease, including our understanding of inborn errors of metabolism (IEM). The application of metabolomics in IEM research has already led to the discovery of several novel IEMs and the identification of novel IEM biomarkers. However, with hundreds of known IEMs and more than 700 associated IEM metabolites, it is becoming increasingly challenging for clinical researchers to keep track of IEMs, their associated metabolites, and their corresponding metabolic mechanisms. Furthermore, when using metabolomics to assist in IEM biomarker discovery or even in IEM diagnosis, it is becoming much more difficult to properly identify metabolites from the complex NMR and MS spectra collected from IEM patients. To that end, comprehensive, open access metabolite databases that provide up-to-date referential information about metabolites, metabolic pathways, normal/abnormal metabolite concentrations, and reference NMR or MS spectra for compound identification are essential. Over the last few years, a number of compound databases, including the Human Metabolome Database (HMDB), have been developed to address these challenges. First described in 2007, the HMDB is now the world’s largest and most comprehensive metabolomic resource for human metabolic studies. The latest release of the HMDB contains 114,100 metabolite entries (with 247 being relevant to IEMs), thousands of metabolite concentrations (with 600 being relevant to IEMs), and ~33,000 metabolic and disease-associated pathways (with 202 being relevant to IEMs). Here we provide a summary of the HMDB and offer some guidance on how it can be used in metabolomic studies of IEMs.

Keywords

Databases metabolomics Human Metabolome Database bioinformatics inborn errors of metabolism 

Notes

Acknowledgements

Funding for the HMDB and many of the programs described in this review has been provided by Genome Canada, Genome Alberta, The Canadian Institutes of Health Research, Alberta Innovates Health Solutions, and The Canada Foundation for Innovation.

Compliance with ethical standards

Conflict of interest

Rupasri Mandal, Danuta Chamot, David S. Wishart declare that they have no conflict of interest.

Informed consent and animals rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. Allen F, Pon A, Wilson M, Greiner R, Wishart D (2014) CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucl Acids Res 42(Web Server issue):W94–W99CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allen F, Pon A, Greiner R, Wishart D (2016) Computational prediction of electron ionization mass spectra to assist in GC/MS compound identification. Anal Chem 88:7689–7697.  https://doi.org/10.1021/acs.analchem.6b01622 CrossRefPubMedGoogle Scholar
  3. Berman H, Henrick K, Nakamura H, Markley JL (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucl Acids Res 35:D301–D303.  https://doi.org/10.1093/nar/gkl971 CrossRefPubMedGoogle Scholar
  4. Bouatra S, Aziat F, Mandal R et al (2013) The Human Urine Metabolome. PLoS One 8:e73076.  https://doi.org/10.1371/journal.pone.0073076 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Caspi R, Billington R, Ferrer L et al (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucl Acids Res 44:D471–D480.  https://doi.org/10.1093/nar/gkv1164 CrossRefPubMedGoogle Scholar
  6. Clayton PT (2001) Applications of mass spectrometry in the study of inborn errors of metabolism. J Inherit Metab Dis 24:139–150CrossRefPubMedGoogle Scholar
  7. Dame ZT, Aziat F, Mandal R et al (2015) The human saliva metabolome. Metabolomics 11:1864–1883.  https://doi.org/10.1007/s11306-015-0840-5 CrossRefGoogle Scholar
  8. Dias DA, Jones OA, Beale DJ et al (2016) Current and future perspectives on the structural identification of small molecules in biological systems. Metabolites 6:E46CrossRefPubMedGoogle Scholar
  9. Hamosh A, Scott AF, Amberger J et al (2002) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucl Acids Res 30:52–55CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hastings J, de Matos P, Dekker A et al (2013) The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucl Acids Res 41:D456–D463.  https://doi.org/10.1093/nar/gks1146 CrossRefPubMedGoogle Scholar
  11. Horai H, Arita M, Kanaya S et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714.  https://doi.org/10.1002/jms.1777 CrossRefPubMedGoogle Scholar
  12. Janečková H, Hron K, Wojtowicz P et al (2012) Targeted metabolomic analysis of plasma samples for the diagnosis of inherited metabolic disorders. J Chromatogr A 1226:11–17.  https://doi.org/10.1016/j.chroma.2011.09.074 CrossRefPubMedGoogle Scholar
  13. Jewison T, Su Y, Disfany FM et al (2014) SMPDB 2.0: big improvements to the Small Molecule Pathway Database. Nucl Acids Res 42:D478–D484.  https://doi.org/10.1093/nar/gkt1067 CrossRefPubMedGoogle Scholar
  14. Johnson JA, Pohar SL, Majumdar SR (2006) Health care use and costs in the decade after identification of type 1 and type 2 diabetes: a population-based study. Diabetes Care 29:2403–2408.  https://doi.org/10.2337/dc06-0735 CrossRefPubMedGoogle Scholar
  15. Kanehisa M, Goto S, Sato Y et al (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucl Acids Res 42:D199–D205.  https://doi.org/10.1093/nar/gkt1076 CrossRefPubMedGoogle Scholar
  16. Katzmarzyk PT, Janssen I (2004) The economic costs associated with physical inactivity and obesity in Canada: an update. Can J Appl Physiol 29:90–115CrossRefPubMedGoogle Scholar
  17. Knox C, Law V, Jewison T et al (2011) DrugBank 3.0: a comprehensive resource for “omics” research on drugs. Nucl Acids Res 39:D1035–D1041.  https://doi.org/10.1093/nar/gkq1126 CrossRefPubMedGoogle Scholar
  18. Kuhara T (2005) Gas chromatographic-mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism. Mass Spectrom Rev 24:814–827.  https://doi.org/10.1002/mas.20038 CrossRefPubMedGoogle Scholar
  19. Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279:1200–1205CrossRefPubMedGoogle Scholar
  20. Lei Z, Jing L, Qiu F et al (2015) Construction of an ultrahigh pressure liquid chromatography-tandem mass spectral library of plant natural products and comparative spectral analyses. Anal Chem 87:7373–7381.  https://doi.org/10.1021/acs.analchem.5b01559 CrossRefPubMedGoogle Scholar
  21. Mahidol C, Ruchirawat S, Prawat H et al (1998) Biodiversity and natural product drug discovery. Pure Appl Chem 70:2065–2072.  https://doi.org/10.1351/pac199870112065 CrossRefGoogle Scholar
  22. Mandal R, Guo AC, Chaudhary KK et al (2012) Multi-platform characterization of the human cerebrospinal fluid metabolome: a comprehensive and quantitative update. Genome Med 4:38.  https://doi.org/10.1186/gm337 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Miller MJ, Kennedy AD, Eckhart AD et al (2015) Untargeted metabolomic analysis for the clinical screening of inborn errors of metabolism. J Inherit Metab Dis 38:1029–1039.  https://doi.org/10.1007/s10545-015-9843-7 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Moolenaar SH, Engelke UF, Wevers RA (2003) Proton nuclear magnetic resonance spectroscopy of body fluids in the field of inborn errors of metabolism. Ann Clin Biochem 40:16–24CrossRefPubMedGoogle Scholar
  25. NCBI Resource Coordinators (2015) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 43:D6–D17.  https://doi.org/10.1093/nar/gku1130 CrossRefGoogle Scholar
  26. Pitt JJ, Eggington M, Kahler SG (2002) Comprehensive screening of urine samples for inborn errors of metabolism by electrospray tandem mass spectrometry. Clin Chem 48:1970–1980PubMedGoogle Scholar
  27. Pon A, Jewison T, Su Y et al (2015) Pathways with PathWhiz. Nucl Acids Res 43:W552–W559.  https://doi.org/10.1093/nar/gkv399 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Psychogios N, Hau DD, Peng J et al (2011) The Human Serum Metabolome. PLoS One 6:e16957.  https://doi.org/10.1371/journal.pone.0016957 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Scalbert A, Andres-Lacueva C, Arita M et al (2011) Databases on food phytochemicals and their health-promoting effects. J Agric Food Chem 59:4331–4348.  https://doi.org/10.1021/jf200591d CrossRefPubMedGoogle Scholar
  30. Tebani A, Abily-Donval L, Afonso C, Marret S, Bekri S (2016) Clinical metabolomics: The new metabolic window for inborn errors of metabolism investigations in the post-genomic era. Int J Mol Sci 20:17.  https://doi.org/10.3390/ijms17071167 Google Scholar
  31. Tietz NW (1995) Clinical guide to laboratory tests, 3rd edn. W. B. Saunders, PhiladelphiaGoogle Scholar
  32. Ulrich EL, Akutsu H, Doreleijers JF et al (2007) BioMagResBank. Nucl Acids Res 36:D402–D408.  https://doi.org/10.1093/nar/gkm957 CrossRefPubMedPubMedCentralGoogle Scholar
  33. UniProt Consortium (2015) UniProt: a hub for protein information. Nucl Acids Res 43:D204–D212.  https://doi.org/10.1093/nar/gku989 CrossRefGoogle Scholar
  34. Wang M, Carver JJ, Phelan VV et al (2016) Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 34:828–837.  https://doi.org/10.1038/nbt.3597 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wheeler DL, Barrett T, Benson DA et al (2007) Database resources of the National Center for Biotechnology Information. Nucl Acids Res 36:D13–D21.  https://doi.org/10.1093/nar/gkm1000 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wohlgemuth G, Mehta SS, Mejia RF et al (2016) SPLASH, A hashed identifier for mass spectra. Nat Biotechnol 34:1099–1101CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 15:473–484.  https://doi.org/10.1038/nrd.2016.32 CrossRefPubMedGoogle Scholar
  38. Wishart D, Arndt D, Pon A et al (2015) T3DB: the toxic exposome database. Nucl Acids Res 43:D928–D934.  https://doi.org/10.1093/nar/gku1004 CrossRefPubMedGoogle Scholar
  39. Wishart DS (2009) Computational strategies for metabolite identification in metabolomics. Bioanalysis 1:1579–1596.  https://doi.org/10.4155/bio.09.138 CrossRefPubMedGoogle Scholar
  40. Wishart DS (2005) Metabolomics: The Principles and Potential Applications to Transplantation. Am J Transplant 5:2814–2820.  https://doi.org/10.1111/j.1600-6143.2005.01119.x CrossRefPubMedGoogle Scholar
  41. Wishart DS, Feunang YD, Marcu A et al (2017) HMDB 4.0: The Human Metabolome Database for 2018. Nucl Acids Res.  https://doi.org/10.1093/nar/gkx1089
  42. Wishart DS, Knox C, Guo AC et al (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucl Acids Res 36:D901–D906.  https://doi.org/10.1093/nar/gkm958 CrossRefPubMedGoogle Scholar
  43. Wishart DS, Tzur D, Knox C et al (2007) HMDB: the Human Metabolome Database. Nucl Acids Res 35:D521–D526.  https://doi.org/10.1093/nar/gkl923 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© SSIEM 2018

Authors and Affiliations

  1. 1.Departments of Biological SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Computing ScienceUniversity of AlbertaEdmontonCanada
  3. 3.National Institute for NanotechnologyEdmontonCanada

Personalised recommendations