Skip to main content
Log in

Mildly compromised tetrahydrobiopterin cofactor biosynthesis due to Pts variants leads to unusual body fat distribution and abdominal obesity in mice

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Tetrahydrobiopterin (BH4) is an essential cofactor for the aromatic amino acid hydroxylases, alkylglycerol monooxygenase, and nitric oxide synthases (NOS). Inborn errors of BH4 metabolism lead to severe insufficiency of brain monoamine neurotransmitters while augmentation of BH4 by supplementation or stimulation of its biosynthesis is thought to ameliorate endothelial NOS (eNOS) dysfunction, to protect from (cardio-) vascular disease and/or prevent obesity and development of the metabolic syndrome. We have previously reported that homozygous knock-out mice for the 6-pyruvolytetrahydropterin synthase (PTPS; Pts-ko/ko) mice with no BH4 biosynthesis die after birth. Here we generated a Pts-knock-in (Pts-ki) allele expressing the murine PTPS-p.Arg15Cys with low residual activity (15 % of wild-type in vitro) and investigated homozygous (Pts-ki/ki) and compound heterozygous (Pts-ki/ko) mutants. All mice showed normal viability and depending on the severity of the Pts alleles exhibited up to 90 % reduction of PTPS activity concomitant with neopterin elevation and mild reduction of total biopterin while blood L-phenylalanine and brain monoamine neurotransmitters were unaffected. Yet, adult mutant mice with compromised PTPS activity (i.e., Pts-ki/ko, Pts-ki/ki or Pts-ko/wt) had increased body weight and elevated intra-abdominal fat. Comprehensive phenotyping of Pts-ki/ki mice revealed alterations in energy metabolism with proportionally higher fat content but lower lean mass, and increased blood glucose and cholesterol. Transcriptome analysis indicated changes in glucose and lipid metabolism. Furthermore, differentially expressed genes associated with obesity, weight loss, hepatic steatosis, and insulin sensitivity were consistent with the observed phenotypic alterations. We conclude that reduced PTPS activity concomitant with mildly compromised BH4-biosynthesis leads to abnormal body fat distribution and abdominal obesity at least in mice. This study associates a novel single gene mutation with monogenic forms of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alp NJ, Mussa S, Khoo J et al (2003) Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J Clin Invest 112:725–735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Babaev VR, Runner RP, Fan D et al (2011) Macrophage Mal1 deficiency suppresses atherosclerosis in low-density lipoprotein receptor-null mice by activating peroxisome proliferator-activated receptor-gamma-regulated genes. Arterioscler Thromb Vasc Biol 31:1283–1290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blau N, van Spronsen FJ, Levy HL (2010) Phenylketonuria. Lancet 376:1417–1427

    Article  CAS  PubMed  Google Scholar 

  • Burke SJ, Goff MR, Updegraff BL et al (2012) Regulation of the CCL2 gene in pancreatic beta-cells by IL-1beta and glucocorticoids: role of MKP-1. PLoS One 7:e46986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daugherity EK, Balmus G, Al Saei A et al (2012) The DNA damage checkpoint protein ATM promotes hepatocellular apoptosis and fibrosis in a mouse model of non-alcoholic fatty liver disease. Cell Cycle 11:1918–1928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Rosa S, Cirillo P, Pacileo M et al (2011) Neopterin: from forgotten biomarker to leading actor in cardiovascular pathophysiology. Curr Vasc Pharmacol 9:188–199

    Article  PubMed  Google Scholar 

  • Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444:881–887

    Article  CAS  PubMed  Google Scholar 

  • Duplain H, Burcelin R, Sartori C et al (2001) Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 104:342–345

    Article  CAS  PubMed  Google Scholar 

  • Elzaouk L, Leimbacher W, Turri M et al (2003) Dwarfism and low insulin-like growth factor-1 due to dopamine depletion in Pts−/− mice rescued by feeding neurotransmitter precursors and H4-biopterin. J Biol Chem 278:28303–28311

    Article  CAS  PubMed  Google Scholar 

  • Embury JE, Charron CE, Martynyuk A et al (2007) PKU is a reversible neurodegenerative process within the nigrostriatum that begins as early as 4 weeks of age in Pah(enu2) mice. Brain Res 1127:136–150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farooqi IS, O’Rahilly S (2005) Monogenic obesity in humans. Annu Rev Med 56:443–458

    Article  CAS  PubMed  Google Scholar 

  • Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714

    Article  PubMed  Google Scholar 

  • Fox CS, Massaro JM, Hoffmann U et al (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham heart study. Circulation 116:39–48

    Article  Google Scholar 

  • Gailus-Durner V, Fuchs H, Becker L et al (2005) Introducing the German mouse clinic: open access platform for standardized phenotyping. Nat Methods 2:403–404

    Article  CAS  PubMed  Google Scholar 

  • Gailus-Durner V, Fuchs H, Adler T et al (2009) Systemic first-line phenotyping. Methods Mol Biol 530:463–509

    Article  CAS  Google Scholar 

  • Ghosh PM, Shu ZJ, Zhu B et al (2012) Role of beta-adrenergic receptors in regulation of hepatic fat accumulation during aging. J Endocrinol 213:251–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guenard F, Bouchard L, Tchernof A et al (2013) DUSP1 gene polymorphisms are associated with obesity-related metabolic complications among severely obese patients and impact on gene methylation and expression. Int J Genomics 2013:609748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ihlemann N, Rask-Madsen C, Perner A et al (2003) Tetrahydrobiopterin restores endothelial dysfunction induced by an oral glucose challenge in healthy subjects. Am J Physiol Heart Circ Physiol 285:H875–H882

    Article  CAS  Google Scholar 

  • Joseph B, Dyer CA (2003) Relationship between myelin production and dopamine synthesis in the PKU mouse brain. J Neurochem 86:615–626

    Article  CAS  PubMed  Google Scholar 

  • Leeming RJ, Blair JA, Melikian V, O’Gorman DJ (1976) Biopterin derivatives in human body fluids and tissues. J Clin Pathol 29:444–451

    Article  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

  • Matsubara Y, Gaull GE (1985) Biopterin and neopterin in various milks and infant formulas. Am J Clin Nutr 41:110–112

    CAS  PubMed  Google Scholar 

  • McNeill E, Channon KM (2012) The role of tetrahydrobiopterin in inflammation and cardiovascular disease. Thromb Haemost 108:832–839

    Article  CAS  PubMed  Google Scholar 

  • Meininger CJ, Marinos RS, Hatakeyama K et al (2000) Impaired nitric oxide production in coronary endothelial cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency. Biochem J 349:353–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meininger CJ, Cai S, Parker JL et al (2004) GTP cyclohydrolase I gene transfer reverses tetrahydrobiopterin deficiency and increases nitric oxide synthesis in endothelial cells and isolated vessels from diabetic rats. FASEB J 18:1900–1902

    CAS  PubMed  Google Scholar 

  • Nystrom T, Nygren A, Sjoholm A (2004) Tetrahydrobiopterin increases insulin sensitivity in patients with type 2 diabetes and coronary heart disease. Am J Physiol Endocrinol Metab 287:E919–E925

    Article  PubMed  Google Scholar 

  • Oppliger T, Thöny B, Nar H et al (1995) Structural and functional consequences of mutations in 6-pyruvoyltetrahydropterin synthase causing hyperphenylalaninemia in humans. Phosphorylation is a requirement for in vivo activity. J Biol Chem 270:29498–29506

    Article  CAS  PubMed  Google Scholar 

  • Pannirselvam M, Simon V, Verma S, Anderson T, Triggle CR (2003) Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small mesenteric arteries from diabetic (db/db) mice. Br J Pharmacol 140:701–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park HJ, Kang YM, Kim CH, Jung MH (2010) ATF3 negatively regulates adiponectin receptor 1 expression. Biochem Biophys Res Commun 400:72–77

    Article  CAS  PubMed  Google Scholar 

  • Rader DJ (2007) Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am J Med 120:S12–S18

    Article  CAS  PubMed  Google Scholar 

  • Sheng L, Zhou Y, Chen Z et al (2012) NF-kappaB-inducing kinase (NIK) promotes hyperglycemia and glucose intolerance in obesity by augmenting glucagon action. Nat Med 18:943–949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi W, Meininger CJ, Haynes TE, Hatakeyama K, Wu G (2004) Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem Biophys 41:415–434

    Article  CAS  PubMed  Google Scholar 

  • Simaite D, Kofent J, Gong M et al (2014) Recessive mutations in PCBD1 cause a new type of early-onset diabetes. Diabetes 63:3557–3564

    Article  CAS  PubMed  Google Scholar 

  • Sumi-Ichinose C, Urano F, Kuroda R et al (2001) Catecholamines and serotonin are differently regulated by tetrahydrobiopterin. A study from 6-pyruvoyltetrahydropterin synthase knockout mice. J Biol Chem 276:41150–41160

    Article  CAS  PubMed  Google Scholar 

  • Tai SC, Robb GB, Marsden PA (2004) Endothelial nitric oxide synthase: a new paradigm for gene regulation in the injured blood vessel. Arterioscler Thromb Vasc Biol 24:405–412

    Article  CAS  PubMed  Google Scholar 

  • Thöny B, Leimbacher W, Blau N, Harvie A, Heizmann CW (1994) Hyperphenylalaninemia due to defects in tetrahydrobiopterin metabolism: molecular characterization of mutations in 6-pyruvoyl-tetrahydropterin synthase. Am J Hum Genet 54:782–792

    PubMed Central  PubMed  Google Scholar 

  • Thöny B, Auerbach G, Blau N (2000) Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J 347(Pt 1):1–16

    Article  PubMed Central  PubMed  Google Scholar 

  • Thöny B, Ding Z, Martinez A (2004) Tetrahydrobiopterin protects phenylalanine hydroxylase activity in vivo: implications for tetrahydrobiopterin-responsive hyperphenylalaninemia. FEBS Lett 577:507–511

    Article  PubMed  Google Scholar 

  • Tsuchiya K, Accili D (2013) Liver sinusoidal endothelial cells link hyperinsulinemia to hepatic insulin resistance. Diabetes 62:1478–1489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turri MO, Ilg EC, Thöny B, Blau N (1998) Structure, genomic localization and recombinant expression of the mouse 6-pyruvoyl-tetrahydropterin synthase gene. Biol Chem 379:1441–1447

    CAS  PubMed  Google Scholar 

  • VerHague MA, Cheng D, Weinberg RB, Shelness GS (2013) Apolipoprotein A-IV expression in mouse liver enhances triglyceride secretion and reduces hepatic lipid content by promoting very low density lipoprotein particle expansion. Arterioscler Thromb Vasc Biol 33:2501–2508

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hattori Y, Satoh H et al (2007) Tetrahydrobiopterin prevents endothelial dysfunction and restores adiponectin levels in rats. Eur J Pharmacol 555:48–53

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Xu S, Lee JE et al (2013a) Histone H3K9 methyltransferase G9a represses PPARgamma expression and adipogenesis. EMBO J 32:45–59

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang XA, Deng S, Jiang D et al (2013b) CARD3 deficiency exacerbates diet-induced obesity, hepatosteatosis, and insulin resistance in male mice. Endocrinology 154:685–697

    Article  CAS  PubMed  Google Scholar 

  • Werner ER, Blau N, Thony B (2011) Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem J 438:397–414

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Meininger CJ (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr 22:61–86

    Article  CAS  PubMed  Google Scholar 

  • Wyss CA, Koepfli P, Namdar M et al (2005) Tetrahydrobiopterin restores impaired coronary microvascular dysfunction in hypercholesterolaemia. Eur J Nucl Med Mol Imaging 32:84–91

    Article  CAS  PubMed  Google Scholar 

  • Yan JQ, Tan CZ, Wu JH et al (2013) Neopterin negatively regulates expression of ABCA1 and ABCG1 by the LXRalpha signaling pathway in THP-1 macrophage-derived foam cells. Mol Cell Biochem 379:123–131

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Wang Z, Zhan Y et al (2013) Endogenous A1 adenosine receptor protects mice from acute ethanol-induced hepatotoxicity. Toxicology 309:100–106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Division of Clinical Chemistry and Biochemistry of the University Children’s Hospital for determination of L-Phe from dried blood spots and routine clinical chemistry parameters, the animal facilities of the university hospital for cooperativity, and F. H. Sennhauser for continuous support. We thank Ann-Elisabeth Schwarz, Anke Bettenbrock, and Elfi Holupirek for expert technical assistance. We are grateful for financial support by the ZNZ PhD program of the University of Zurich (BT), the Swiss National Science Foundation (NB & BT), the Hartmann Müller Stiftung (BT) and Stiftung für wissenschaftliche Forschung University of Zürich (Baumgarten Stiftung; BT), and the Novartis “Stiftung für medizinisch-biologische Forschung” (BT). GMC researchers were funded by the German Federal Ministry of Education and Research Infrafrontier grant (01KX1012) and by the German Diabetes Research Center (DZD e.V.), and JB by the Helmholtz Alliance ICEMED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat Thöny.

Ethics declarations

Conflict of interest

None.

Informed consent

No studies with human subjects are included in this manuscript.

Animal rights

All institutional and national guidelines for the care and use of laboratory animals were followed. Animal experiments were carried out in accordance with the guidelines and policies of the State Veterinary Office of Zurich and Swiss law on animal protection, the Swiss Federal Act on Animal Protection (1978), and the Swiss Animal Protection Ordinance (1981). Animal studies presented here received approval from the Cantonal Veterinary Office, Zurich, and the Cantonal Committee for Animal Experiments, Zurich, Switzerland.

Additional information

Communicated by: Gregory Enns

Germaine Korner and Tanja Scherer contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 125 kb)

Supplementary Table S4

(XLSX 1118 kb)

Supplementary Table S5

(XLSX 113 kb)

Supplementary Fig. S1

Generation of the murine Pts-ki allele. (A) Primary amino acid sequence alignment of human and mouse PTPS, which share 82.1 % sequence identity. The human mutation PTS-p.Arg16Cys (hR16C) and the corresponding mouse mutation Pts-p.Arg15Cys (mR15C), both located in exon 1, are marked with arrows. (B) Schematic representation of genomic structure of the murine Pts wild-type allele (top), the targeting vector pMSY211 including the mR15C mutation (E1’), the p.L16L mutation to destroy the BssSI restriction site, a Pgk-DT-gene-cassette (DT) for negative selection, and a “floxed” Pgk-neo-gene-cassette (PGK neo) for positive selection (middle), and the resulting targeted mutant allele (bottom). (C) Schematic representation of the genotyping concepts for the Pts-wt, Pts-ki, and Pts-ko alleles with genomic DNA and the primer pairs a/b (Pts-ki PCR) and c/d/e (Pts-ko PCR). Pts-ki PCR: primers a and b are located upstream and downstream from exon 1 (E1), respectively. They generate a 730 bp for the wild-type/knock-out alleles and a 751 bp PCR fragment for the knock-in allele (due to additional targeting vector sequence; see C). Digestion with restriction enzyme BssSI, 3 bp downstream of the mR15C-c.43C>T mutation, leads to a 444 bp and a 286 bp fragment for the wild-type/knock-out PCR products. The PCR fragment derived from the Pts-ki allele can not be digested with BssSI because the silent p.L16L/c.48C>G mutation destroys the BssS1-recognition site. The Pts-wt and the Pts-ko alleles cannot be distinguished by the Pts-ki genotyping using primer pair a/b. Pts-ko PCR: genotyping according to our previously published method (Elzaouk et al 2003). Primer c is upstream of exon 2 (E2), primer d is specific for exon 2 and primer e is specific for the lacZ gene. The primer pair c/d results in a wild-type fragment of 287 bp and a knock-in fragment of 316 bp whereas primer pair c/e generates mutant fragment of 355 bp (due to the difference in the Pts-intron 1 sequence between the 129/Ola and C57BL/6 J mice strains; see C). (D) Conventional 2 % agarose gel representative PCR-genotyping for the Pts-ki allele (top; after BssSI digestion) and Pts-ko allele (bottom). (PPT 747 kb)

Supplementary Fig. S2

TH protein expression in brain of Pts-ki/ko mice. Western blot analysis and densitometric quantification of TH in brains from (A) newborn mice (n = 3 Pts-wt/wt, 5 Pts-ko/wt, 24 Pts-ki/wt, and 19 Pts-ki/ko) and (B) young adult animals (n = 3 Pts-wt/wt, 7 Pts-ko/wt, 12 Pts-ki/wt, and 13 Pts-ki/ko); always males and females. For details see also Materials and methods. (PPT 333 kb)

ESM 6

(DOC 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korner, G., Scherer, T., Adamsen, D. et al. Mildly compromised tetrahydrobiopterin cofactor biosynthesis due to Pts variants leads to unusual body fat distribution and abdominal obesity in mice. J Inherit Metab Dis 39, 309–319 (2016). https://doi.org/10.1007/s10545-015-9909-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-015-9909-6

Keywords

Navigation