Advertisement

Journal of Inherited Metabolic Disease

, Volume 39, Issue 2, pp 309–319 | Cite as

Mildly compromised tetrahydrobiopterin cofactor biosynthesis due to Pts variants leads to unusual body fat distribution and abdominal obesity in mice

  • Germaine Korner
  • Tanja Scherer
  • Dea Adamsen
  • Alexander Rebuffat
  • Mark Crabtree
  • Anahita Rassi
  • Rossana Scavelli
  • Daigo Homma
  • Birgit Ledermann
  • Daniel Konrad
  • Hiroshi Ichinose
  • Christian Wolfrum
  • Marion Horsch
  • Birgit Rathkolb
  • Martin Klingenspor
  • Johannes Beckers
  • Eckhard Wolf
  • Valérie Gailus-Durner
  • Helmut Fuchs
  • Martin Hrabě de Angelis
  • Nenad Blau
  • Jan Rozman
  • Beat Thöny
Original Article

Abstract

Tetrahydrobiopterin (BH4) is an essential cofactor for the aromatic amino acid hydroxylases, alkylglycerol monooxygenase, and nitric oxide synthases (NOS). Inborn errors of BH4 metabolism lead to severe insufficiency of brain monoamine neurotransmitters while augmentation of BH4 by supplementation or stimulation of its biosynthesis is thought to ameliorate endothelial NOS (eNOS) dysfunction, to protect from (cardio-) vascular disease and/or prevent obesity and development of the metabolic syndrome. We have previously reported that homozygous knock-out mice for the 6-pyruvolytetrahydropterin synthase (PTPS; Pts-ko/ko) mice with no BH4 biosynthesis die after birth. Here we generated a Pts-knock-in (Pts-ki) allele expressing the murine PTPS-p.Arg15Cys with low residual activity (15 % of wild-type in vitro) and investigated homozygous (Pts-ki/ki) and compound heterozygous (Pts-ki/ko) mutants. All mice showed normal viability and depending on the severity of the Pts alleles exhibited up to 90 % reduction of PTPS activity concomitant with neopterin elevation and mild reduction of total biopterin while blood L-phenylalanine and brain monoamine neurotransmitters were unaffected. Yet, adult mutant mice with compromised PTPS activity (i.e., Pts-ki/ko, Pts-ki/ki or Pts-ko/wt) had increased body weight and elevated intra-abdominal fat. Comprehensive phenotyping of Pts-ki/ki mice revealed alterations in energy metabolism with proportionally higher fat content but lower lean mass, and increased blood glucose and cholesterol. Transcriptome analysis indicated changes in glucose and lipid metabolism. Furthermore, differentially expressed genes associated with obesity, weight loss, hepatic steatosis, and insulin sensitivity were consistent with the observed phenotypic alterations. We conclude that reduced PTPS activity concomitant with mildly compromised BH4-biosynthesis leads to abnormal body fat distribution and abdominal obesity at least in mice. This study associates a novel single gene mutation with monogenic forms of obesity.

Keywords

Nitric Oxide Synthases Tyrosine Hydroxylase Abdominal Obesity Neopterin Biopterin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the Division of Clinical Chemistry and Biochemistry of the University Children’s Hospital for determination of L-Phe from dried blood spots and routine clinical chemistry parameters, the animal facilities of the university hospital for cooperativity, and F. H. Sennhauser for continuous support. We thank Ann-Elisabeth Schwarz, Anke Bettenbrock, and Elfi Holupirek for expert technical assistance. We are grateful for financial support by the ZNZ PhD program of the University of Zurich (BT), the Swiss National Science Foundation (NB & BT), the Hartmann Müller Stiftung (BT) and Stiftung für wissenschaftliche Forschung University of Zürich (Baumgarten Stiftung; BT), and the Novartis “Stiftung für medizinisch-biologische Forschung” (BT). GMC researchers were funded by the German Federal Ministry of Education and Research Infrafrontier grant (01KX1012) and by the German Diabetes Research Center (DZD e.V.), and JB by the Helmholtz Alliance ICEMED.

Compliance with ethical standards

Conflict of interest

None.

Informed consent

No studies with human subjects are included in this manuscript.

Animal rights

All institutional and national guidelines for the care and use of laboratory animals were followed. Animal experiments were carried out in accordance with the guidelines and policies of the State Veterinary Office of Zurich and Swiss law on animal protection, the Swiss Federal Act on Animal Protection (1978), and the Swiss Animal Protection Ordinance (1981). Animal studies presented here received approval from the Cantonal Veterinary Office, Zurich, and the Cantonal Committee for Animal Experiments, Zurich, Switzerland.

Supplementary material

10545_2015_9909_MOESM1_ESM.doc (125 kb)
ESM 1 (DOC 125 kb)
10545_2015_9909_MOESM2_ESM.xlsx (1.1 mb)
Supplementary Table S4 (XLSX 1118 kb)
10545_2015_9909_MOESM3_ESM.xlsx (114 kb)
Supplementary Table S5 (XLSX 113 kb)
10545_2015_9909_MOESM4_ESM.ppt (748 kb)
Supplementary Fig. S1 Generation of the murine Pts-ki allele. (A) Primary amino acid sequence alignment of human and mouse PTPS, which share 82.1 % sequence identity. The human mutation PTS-p.Arg16Cys (hR16C) and the corresponding mouse mutation Pts-p.Arg15Cys (mR15C), both located in exon 1, are marked with arrows. (B) Schematic representation of genomic structure of the murine Pts wild-type allele (top), the targeting vector pMSY211 including the mR15C mutation (E1’), the p.L16L mutation to destroy the BssSI restriction site, a Pgk-DT-gene-cassette (DT) for negative selection, and a “floxed” Pgk-neo-gene-cassette (PGK neo) for positive selection (middle), and the resulting targeted mutant allele (bottom). (C) Schematic representation of the genotyping concepts for the Pts-wt, Pts-ki, and Pts-ko alleles with genomic DNA and the primer pairs a/b (Pts-ki PCR) and c/d/e (Pts-ko PCR). Pts-ki PCR: primers a and b are located upstream and downstream from exon 1 (E1), respectively. They generate a 730 bp for the wild-type/knock-out alleles and a 751 bp PCR fragment for the knock-in allele (due to additional targeting vector sequence; see C). Digestion with restriction enzyme BssSI, 3 bp downstream of the mR15C-c.43C>T mutation, leads to a 444 bp and a 286 bp fragment for the wild-type/knock-out PCR products. The PCR fragment derived from the Pts-ki allele can not be digested with BssSI because the silent p.L16L/c.48C>G mutation destroys the BssS1-recognition site. The Pts-wt and the Pts-ko alleles cannot be distinguished by the Pts-ki genotyping using primer pair a/b. Pts-ko PCR: genotyping according to our previously published method (Elzaouk et al 2003). Primer c is upstream of exon 2 (E2), primer d is specific for exon 2 and primer e is specific for the lacZ gene. The primer pair c/d results in a wild-type fragment of 287 bp and a knock-in fragment of 316 bp whereas primer pair c/e generates mutant fragment of 355 bp (due to the difference in the Pts-intron 1 sequence between the 129/Ola and C57BL/6 J mice strains; see C). (D) Conventional 2 % agarose gel representative PCR-genotyping for the Pts-ki allele (top; after BssSI digestion) and Pts-ko allele (bottom). (PPT 747 kb)
10545_2015_9909_MOESM5_ESM.ppt (333 kb)
Supplementary Fig. S2 TH protein expression in brain of Pts-ki/ko mice. Western blot analysis and densitometric quantification of TH in brains from (A) newborn mice (n = 3 Pts-wt/wt, 5 Pts-ko/wt, 24 Pts-ki/wt, and 19 Pts-ki/ko) and (B) young adult animals (n = 3 Pts-wt/wt, 7 Pts-ko/wt, 12 Pts-ki/wt, and 13 Pts-ki/ko); always males and females. For details see also Materials and methods. (PPT 333 kb)
10545_2015_9909_MOESM6_ESM.doc (100 kb)
ESM 6 (DOC 99 kb)

References

  1. Alp NJ, Mussa S, Khoo J et al (2003) Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J Clin Invest 112:725–735PubMedCentralCrossRefPubMedGoogle Scholar
  2. Babaev VR, Runner RP, Fan D et al (2011) Macrophage Mal1 deficiency suppresses atherosclerosis in low-density lipoprotein receptor-null mice by activating peroxisome proliferator-activated receptor-gamma-regulated genes. Arterioscler Thromb Vasc Biol 31:1283–1290PubMedCentralCrossRefPubMedGoogle Scholar
  3. Blau N, van Spronsen FJ, Levy HL (2010) Phenylketonuria. Lancet 376:1417–1427CrossRefPubMedGoogle Scholar
  4. Burke SJ, Goff MR, Updegraff BL et al (2012) Regulation of the CCL2 gene in pancreatic beta-cells by IL-1beta and glucocorticoids: role of MKP-1. PLoS One 7:e46986PubMedCentralCrossRefPubMedGoogle Scholar
  5. Daugherity EK, Balmus G, Al Saei A et al (2012) The DNA damage checkpoint protein ATM promotes hepatocellular apoptosis and fibrosis in a mouse model of non-alcoholic fatty liver disease. Cell Cycle 11:1918–1928PubMedCentralCrossRefPubMedGoogle Scholar
  6. De Rosa S, Cirillo P, Pacileo M et al (2011) Neopterin: from forgotten biomarker to leading actor in cardiovascular pathophysiology. Curr Vasc Pharmacol 9:188–199CrossRefPubMedGoogle Scholar
  7. Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444:881–887CrossRefPubMedGoogle Scholar
  8. Duplain H, Burcelin R, Sartori C et al (2001) Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 104:342–345CrossRefPubMedGoogle Scholar
  9. Elzaouk L, Leimbacher W, Turri M et al (2003) Dwarfism and low insulin-like growth factor-1 due to dopamine depletion in Pts−/− mice rescued by feeding neurotransmitter precursors and H4-biopterin. J Biol Chem 278:28303–28311CrossRefPubMedGoogle Scholar
  10. Embury JE, Charron CE, Martynyuk A et al (2007) PKU is a reversible neurodegenerative process within the nigrostriatum that begins as early as 4 weeks of age in Pah(enu2) mice. Brain Res 1127:136–150PubMedCentralCrossRefPubMedGoogle Scholar
  11. Farooqi IS, O’Rahilly S (2005) Monogenic obesity in humans. Annu Rev Med 56:443–458CrossRefPubMedGoogle Scholar
  12. Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714CrossRefPubMedGoogle Scholar
  13. Fox CS, Massaro JM, Hoffmann U et al (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham heart study. Circulation 116:39–48CrossRefGoogle Scholar
  14. Gailus-Durner V, Fuchs H, Becker L et al (2005) Introducing the German mouse clinic: open access platform for standardized phenotyping. Nat Methods 2:403–404CrossRefPubMedGoogle Scholar
  15. Gailus-Durner V, Fuchs H, Adler T et al (2009) Systemic first-line phenotyping. Methods Mol Biol 530:463–509CrossRefGoogle Scholar
  16. Ghosh PM, Shu ZJ, Zhu B et al (2012) Role of beta-adrenergic receptors in regulation of hepatic fat accumulation during aging. J Endocrinol 213:251–261PubMedCentralCrossRefPubMedGoogle Scholar
  17. Guenard F, Bouchard L, Tchernof A et al (2013) DUSP1 gene polymorphisms are associated with obesity-related metabolic complications among severely obese patients and impact on gene methylation and expression. Int J Genomics 2013:609748PubMedCentralCrossRefPubMedGoogle Scholar
  18. Ihlemann N, Rask-Madsen C, Perner A et al (2003) Tetrahydrobiopterin restores endothelial dysfunction induced by an oral glucose challenge in healthy subjects. Am J Physiol Heart Circ Physiol 285:H875–H882CrossRefGoogle Scholar
  19. Joseph B, Dyer CA (2003) Relationship between myelin production and dopamine synthesis in the PKU mouse brain. J Neurochem 86:615–626CrossRefPubMedGoogle Scholar
  20. Leeming RJ, Blair JA, Melikian V, O’Gorman DJ (1976) Biopterin derivatives in human body fluids and tissues. J Clin Pathol 29:444–451PubMedCentralCrossRefGoogle Scholar
  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408Google Scholar
  22. Matsubara Y, Gaull GE (1985) Biopterin and neopterin in various milks and infant formulas. Am J Clin Nutr 41:110–112PubMedGoogle Scholar
  23. McNeill E, Channon KM (2012) The role of tetrahydrobiopterin in inflammation and cardiovascular disease. Thromb Haemost 108:832–839CrossRefPubMedGoogle Scholar
  24. Meininger CJ, Marinos RS, Hatakeyama K et al (2000) Impaired nitric oxide production in coronary endothelial cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency. Biochem J 349:353–356PubMedCentralCrossRefPubMedGoogle Scholar
  25. Meininger CJ, Cai S, Parker JL et al (2004) GTP cyclohydrolase I gene transfer reverses tetrahydrobiopterin deficiency and increases nitric oxide synthesis in endothelial cells and isolated vessels from diabetic rats. FASEB J 18:1900–1902PubMedGoogle Scholar
  26. Nystrom T, Nygren A, Sjoholm A (2004) Tetrahydrobiopterin increases insulin sensitivity in patients with type 2 diabetes and coronary heart disease. Am J Physiol Endocrinol Metab 287:E919–E925CrossRefPubMedGoogle Scholar
  27. Oppliger T, Thöny B, Nar H et al (1995) Structural and functional consequences of mutations in 6-pyruvoyltetrahydropterin synthase causing hyperphenylalaninemia in humans. Phosphorylation is a requirement for in vivo activity. J Biol Chem 270:29498–29506CrossRefPubMedGoogle Scholar
  28. Pannirselvam M, Simon V, Verma S, Anderson T, Triggle CR (2003) Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small mesenteric arteries from diabetic (db/db) mice. Br J Pharmacol 140:701–706PubMedCentralCrossRefPubMedGoogle Scholar
  29. Park HJ, Kang YM, Kim CH, Jung MH (2010) ATF3 negatively regulates adiponectin receptor 1 expression. Biochem Biophys Res Commun 400:72–77CrossRefPubMedGoogle Scholar
  30. Rader DJ (2007) Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am J Med 120:S12–S18CrossRefPubMedGoogle Scholar
  31. Sheng L, Zhou Y, Chen Z et al (2012) NF-kappaB-inducing kinase (NIK) promotes hyperglycemia and glucose intolerance in obesity by augmenting glucagon action. Nat Med 18:943–949PubMedCentralCrossRefPubMedGoogle Scholar
  32. Shi W, Meininger CJ, Haynes TE, Hatakeyama K, Wu G (2004) Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem Biophys 41:415–434CrossRefPubMedGoogle Scholar
  33. Simaite D, Kofent J, Gong M et al (2014) Recessive mutations in PCBD1 cause a new type of early-onset diabetes. Diabetes 63:3557–3564CrossRefPubMedGoogle Scholar
  34. Sumi-Ichinose C, Urano F, Kuroda R et al (2001) Catecholamines and serotonin are differently regulated by tetrahydrobiopterin. A study from 6-pyruvoyltetrahydropterin synthase knockout mice. J Biol Chem 276:41150–41160CrossRefPubMedGoogle Scholar
  35. Tai SC, Robb GB, Marsden PA (2004) Endothelial nitric oxide synthase: a new paradigm for gene regulation in the injured blood vessel. Arterioscler Thromb Vasc Biol 24:405–412CrossRefPubMedGoogle Scholar
  36. Thöny B, Leimbacher W, Blau N, Harvie A, Heizmann CW (1994) Hyperphenylalaninemia due to defects in tetrahydrobiopterin metabolism: molecular characterization of mutations in 6-pyruvoyl-tetrahydropterin synthase. Am J Hum Genet 54:782–792PubMedCentralPubMedGoogle Scholar
  37. Thöny B, Auerbach G, Blau N (2000) Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J 347(Pt 1):1–16PubMedCentralCrossRefPubMedGoogle Scholar
  38. Thöny B, Ding Z, Martinez A (2004) Tetrahydrobiopterin protects phenylalanine hydroxylase activity in vivo: implications for tetrahydrobiopterin-responsive hyperphenylalaninemia. FEBS Lett 577:507–511CrossRefPubMedGoogle Scholar
  39. Tsuchiya K, Accili D (2013) Liver sinusoidal endothelial cells link hyperinsulinemia to hepatic insulin resistance. Diabetes 62:1478–1489PubMedCentralCrossRefPubMedGoogle Scholar
  40. Turri MO, Ilg EC, Thöny B, Blau N (1998) Structure, genomic localization and recombinant expression of the mouse 6-pyruvoyl-tetrahydropterin synthase gene. Biol Chem 379:1441–1447PubMedGoogle Scholar
  41. VerHague MA, Cheng D, Weinberg RB, Shelness GS (2013) Apolipoprotein A-IV expression in mouse liver enhances triglyceride secretion and reduces hepatic lipid content by promoting very low density lipoprotein particle expansion. Arterioscler Thromb Vasc Biol 33:2501–2508CrossRefPubMedGoogle Scholar
  42. Wang X, Hattori Y, Satoh H et al (2007) Tetrahydrobiopterin prevents endothelial dysfunction and restores adiponectin levels in rats. Eur J Pharmacol 555:48–53CrossRefPubMedGoogle Scholar
  43. Wang L, Xu S, Lee JE et al (2013a) Histone H3K9 methyltransferase G9a represses PPARgamma expression and adipogenesis. EMBO J 32:45–59PubMedCentralCrossRefPubMedGoogle Scholar
  44. Wang XA, Deng S, Jiang D et al (2013b) CARD3 deficiency exacerbates diet-induced obesity, hepatosteatosis, and insulin resistance in male mice. Endocrinology 154:685–697CrossRefPubMedGoogle Scholar
  45. Werner ER, Blau N, Thony B (2011) Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem J 438:397–414CrossRefPubMedGoogle Scholar
  46. Wu G, Meininger CJ (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr 22:61–86CrossRefPubMedGoogle Scholar
  47. Wyss CA, Koepfli P, Namdar M et al (2005) Tetrahydrobiopterin restores impaired coronary microvascular dysfunction in hypercholesterolaemia. Eur J Nucl Med Mol Imaging 32:84–91CrossRefPubMedGoogle Scholar
  48. Yan JQ, Tan CZ, Wu JH et al (2013) Neopterin negatively regulates expression of ABCA1 and ABCG1 by the LXRalpha signaling pathway in THP-1 macrophage-derived foam cells. Mol Cell Biochem 379:123–131CrossRefPubMedGoogle Scholar
  49. Yang P, Wang Z, Zhan Y et al (2013) Endogenous A1 adenosine receptor protects mice from acute ethanol-induced hepatotoxicity. Toxicology 309:100–106CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM 2016

Authors and Affiliations

  • Germaine Korner
    • 1
    • 2
    • 3
  • Tanja Scherer
    • 1
    • 2
    • 3
  • Dea Adamsen
    • 1
    • 2
    • 3
  • Alexander Rebuffat
    • 1
  • Mark Crabtree
    • 4
  • Anahita Rassi
    • 5
  • Rossana Scavelli
    • 1
  • Daigo Homma
    • 6
  • Birgit Ledermann
    • 7
  • Daniel Konrad
    • 8
  • Hiroshi Ichinose
    • 6
  • Christian Wolfrum
    • 9
  • Marion Horsch
    • 10
  • Birgit Rathkolb
    • 10
    • 11
    • 15
  • Martin Klingenspor
    • 12
    • 13
  • Johannes Beckers
    • 10
    • 14
    • 15
  • Eckhard Wolf
    • 11
  • Valérie Gailus-Durner
    • 10
  • Helmut Fuchs
    • 10
  • Martin Hrabě de Angelis
    • 10
    • 14
    • 15
  • Nenad Blau
    • 1
    • 16
  • Jan Rozman
    • 10
    • 12
    • 15
  • Beat Thöny
    • 1
    • 2
    • 3
  1. 1.Division of MetabolismUniversity Children’s Hospital ZürichZürichSwitzerland
  2. 2.Affiliated with the Neuroscience Center Zurich (ZNZ)University of Zurich and ETH ZurichZürichSwitzerland
  3. 3.Children’s Research Center (CRC)ZürichSwitzerland
  4. 4.BHF Centre of Excellence, Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
  5. 5.Division of Clinical Chemistry and BiochemistryUniversity Children’s Hospital ZürichZürichSwitzerland
  6. 6.Department of Life Science, Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
  7. 7.Division of Animal FacilityUniversity of ZurichZürichSwitzerland
  8. 8.Division of Pediatric Endocrinology and DiabetologyUniversity Children’s Hospital ZürichZürichSwitzerland
  9. 9.Institute of Food Nutrition and Health, Swiss Federal Institute of Technology ZürichZürichSwitzerland
  10. 10.German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
  11. 11.Institute of Molecular Animal Breeding and Biotechnology, Gene CenterLudwig-Maximilians-Universität MünchenMunichGermany
  12. 12.Molecular Nutritional Medicine, Else Kröner-Fresenius CenterTechnische Universität MünchenFreising-WeihenstephanGermany
  13. 13.ZIEL – Center for Nutrition and Food SciencesTechnische Universität MünchenFreisingGermany
  14. 14.Chair of Experimental Genetics, Center of Life and Food Sciences WeihenstephanTechnische Universität MünchenFreising-WeihenstephanGermany
  15. 15.German Center for Diabetes Research (DZD)NeuherbergGermany
  16. 16.Dietmar-Hopp Metabolic CenterUniversity Children’s Hospital HeidelbergHeidelbergGermany

Personalised recommendations