Journal of Inherited Metabolic Disease

, Volume 38, Issue 1, pp 187–199 | Cite as

Complex lipid trafficking in Niemann-Pick disease type C

Complex Lipids


Niemann-Pick disease type C (NPC) is an atypical lysosomal storage disease resulting from mutations in one of two genes, either NPC1 or NPC2. Although a neurovisceral disorder, it is above all a neurodegenerative disease in the vast majority of patients. Not an enzyme deficiency, it is currently conceived as a lipid trafficking disorder. Impaired egress of cholesterol from the late endosomal/lysosomal (LE/L) compartment is a specific and key element of the pathogenesis, but other lipids, more specially sphingolipids, are also involved, and there are indications for further abnormalities. The full function of the NPC1 and NPC2 proteins is still unclear. This review provides a reappraisal of lipid storage and lysosomal enzymes activities in tissues/cells from NPC patients and animal models. It summarizes the current knowledge on the NPC1 and NPC2 proteins and their function in transport of cholesterol within the late endosomal-lysosomal compartment, with emphasis on differences between systemic organs and the brain; it also discusses regulation by membrane lipids of the NPC2-mediated cholesterol trafficking, interplay between cholesterol and sphingomyelin, the metabolic origin of glycosphingolipids stored in brain, and the putative role of free sphingoid bases in pathogenesis. Brief mention is finally made of diseases affecting other genes that were very recently shown to impact the "NPC pathway".


Sphingosine Miglustat Sphinganine Unesterified Cholesterol Acid Sphingomyelinase 


Conflicts of interest

MTV has received travel expenses, consulting fees and presentation honoraria from Actelion Pharmaceuticals Ltd and consulting fees from Shire HGT


  1. Amraoui Y, Mengel E, Hennermann JB (2014) Oxysterols in Niemann-Pick type C: limitations of sensitivity and specificity. J Inherit Metab Dis 37(suppl):S150, abstractGoogle Scholar
  2. Aqul A, Liu B, Ramirez CM et al (2011) Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment. J Neurosci 31:9404–9413PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bergamin N, Dardis A, Beltrami A et al (2013) A human neuronal model of Niemann Pick C disease developed from stem cells isolated from patient's skin. Orphanet J Rare Dis 8:34PubMedCentralPubMedCrossRefGoogle Scholar
  4. Björkhem I, Diczfalusy U, Lövgren-Sandblom A et al (2014) On the formation of 7-ketocholesterol from 7-dehydrocholesterol in patients with CTX and SLO. J Lipid Res 55:1165–1172PubMedCrossRefGoogle Scholar
  5. Blom T, Li Z, Bittman R, Somerharju P, Ikonen E (2012) Tracking sphingosine metabolism and transport in sphingolipidoses: NPC1 deficiency as a test case. Traffic 13:1234–1243PubMedCrossRefGoogle Scholar
  6. Boenzi S, Deodato F, Taurisano R et al (2014) A new simple and rapid LC-ESI-MS/MS method for quantification of plasma oxysterols as dimethylaminobutyrate esters. Its successful use for the diagnosis of Niemann-Pick type C disease. Clin Chim Acta 437:93–100PubMedCrossRefGoogle Scholar
  7. Carstea ED, Morris JA, Coleman KG et al (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228–231PubMedCrossRefGoogle Scholar
  8. Chevallier J, Chamoun Z, Jiang G et al (2008) Lysobisphosphatidic acid controls endosomal cholesterol levels. J Biol Chem 283:27871–27880PubMedCrossRefGoogle Scholar
  9. Choudhury A, Sharma DK, Marks DL, Pagano RE (2004) Elevated endosomal cholesterol levels in Niemann-Pick cells inhibit rab4 and perturb membrane recycling. Mol Biol Cell 15:4500–4511PubMedCentralPubMedCrossRefGoogle Scholar
  10. Davidson CD, Ali NF, Micsenyi MC et al (2009) Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One 4:e6951PubMedCentralPubMedCrossRefGoogle Scholar
  11. Deffieu MS, Pfeffer SR (2011) Niemann-Pick type C 1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding. Proc Natl Acad Sci U S A 108:18932–18936PubMedCentralPubMedCrossRefGoogle Scholar
  12. Devlin C, Pipalia NH, Liao X, Schuchman EH, Maxfield FR, Tabas I (2010) Improvement in lipid and protein trafficking in Niemann-Pick C1 cells by correction of a secondary enzyme defect. Traffic 11:601–615PubMedCentralPubMedCrossRefGoogle Scholar
  13. Elrick MJ, Lieberman AP (2013) Autophagic dysfunction in a lysosomal storage disorder due to impaired proteolysis. Autophagy 9:234–235PubMedCentralPubMedCrossRefGoogle Scholar
  14. Fan M, Sidhu R, Fujiwara H et al (2013) Identification of Niemann-Pick C1 disease biomarkers through sphingolipid profiling. J Lipid Res 54:2800–2814PubMedCentralPubMedCrossRefGoogle Scholar
  15. Gallala HD, Breiden B, Sandhoff K (2011) Regulation of the NPC2 protein-mediated cholesterol trafficking by membrane lipids. J Neurochem 116:702–707PubMedCrossRefGoogle Scholar
  16. Gelsthorpe ME, Baumann N, Millard E et al (2008) Niemann-Pick type C1 I1061T mutant encodes a functional protein that is selected for endoplasmic reticulum-associated degradation due to protein misfolding. J Biol Chem 283:8229–8236PubMedCentralPubMedCrossRefGoogle Scholar
  17. Goldin E, Roff CF, Miller SP et al (1992) Type C Niemann-Pick disease: a murine model of the lysosomal cholesterol lipidosis accumulates sphingosine and sphinganine in liver. Biochim Biophys Acta 1127:303–311PubMedCrossRefGoogle Scholar
  18. Goldman SD, Krise JP (2010) Niemann-Pick C1 functions independently of Niemann-Pick C2 in the initial stage of retrograde transport of membrane-impermeable lysosomal cargo. J Biol Chem 285:4983–4994PubMedCentralPubMedCrossRefGoogle Scholar
  19. Higgins ME, Davies JP, Chen FW, Ioannou YA (1999) Niemann-Pick C1 is a late endosome-resident protein that transiently associates with lysosomes and the trans-Golgi network. Mol Genet Metab 68:1–13PubMedCrossRefGoogle Scholar
  20. Jiang H, Sidhu R, Fujiwara H et al (2014) Development and validation of sensitive LC-MS/MS assays for quantification of 2-hydroxypropyl-beta-cyclodextrin in human plasma and CSF. J Lipid Res 55:1537–1548PubMedCrossRefGoogle Scholar
  21. Karten B, Vance DE, Campenot RB, Vance JE (2002) Cholesterol accumulates in cell bodies, but is decreased in distal axons, of Niemann-Pick C1-deficient neurons. J Neurochem 83:1154–1163PubMedCrossRefGoogle Scholar
  22. Kennedy BE, Charman M, Karten B (2012) Niemann-Pick Type C2 protein contributes to the transport of endosomal cholesterol to mitochondria without interacting with NPC1. J Lipid Res 53:2632–2642PubMedCentralPubMedCrossRefGoogle Scholar
  23. Kennedy BE, Madreiter CT, Vishnu N, Malli R, Graier WF, Karten B (2014) Adaptations of energy metabolism associated with increased levels of mitochondrial cholesterol in Niemann-Pick type C1-deficient Cells. J Biol Chem 289:16278–16289PubMedCrossRefGoogle Scholar
  24. Kolter T, Sandhoff K (2010) Lysosomal degradation of membrane lipids. FEBS Lett 584:1700–1712PubMedCrossRefGoogle Scholar
  25. Kruth HS, Comly ME, Butler JD et al (1986) Type C Niemann-Pick disease. Abnormal metabolism of low density lipoprotein in homozygous and heterozygous fibroblasts. J Biol Chem 261:16769–16774PubMedGoogle Scholar
  26. Kwon HJ, Abi-Mosleh L, Wang ML et al (2009) Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137:1213–1224PubMedCentralPubMedCrossRefGoogle Scholar
  27. Ledesma MD, Prinetti A, Sonnino S, Schuchman EH (2011) Brain pathology in Niemann Pick disease type A: insights from the acid sphingomyelinase knockout mice. J Neurochem 116:779–788PubMedCentralPubMedCrossRefGoogle Scholar
  28. Li H, Turley SD, Liu B, Repa JJ, Dietschy JM (2008) GM2/GD2 and GM3 gangliosides have no effect on cellular cholesterol pools or turnover in normal or NPC1 mice. J Lipid Res 49:1816–1828PubMedCentralPubMedCrossRefGoogle Scholar
  29. Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A (2012) Autophagy in lysosomal storage disorders. Autophagy 8:719–730PubMedCentralPubMedCrossRefGoogle Scholar
  30. Lin N, Zhang H, Qiu W et al (2014) Determination of 7-ketocholesterol in plasma by liquid chromatography mass spectrometry for rapid diagnosis of acid sphingomyelinase deficient Niemann-Pick disease. J Lipid Res 55:338–343PubMedCrossRefGoogle Scholar
  31. Liu Y, Wu YP, Wada R et al (2000) Alleviation of neuronal ganglioside storage does not improve the clinical course of the Niemann-Pick C disease mouse. Hum Mol Genet 9:1087–1092PubMedCrossRefGoogle Scholar
  32. Lloyd-Evans E, Morgan AJ, He X et al (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14:1247–1255PubMedCrossRefGoogle Scholar
  33. Lopez ME, Klein AD, Dimbil UJ, Scott MP (2011) Anatomically defined neuron-based rescue of neurodegenerative Niemann-Pick type C disorder. J Neurosci 31:4367–4378PubMedCentralPubMedCrossRefGoogle Scholar
  34. Maetzel D, Sarkar S, Wang H et al (2014) Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick type C patient-specific iPS cells. Stem Cell Rep 2:866–880CrossRefGoogle Scholar
  35. Maue RA, Burgess RW, Wang B et al (2012) A novel mouse model of Niemann-Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations. Hum Mol Genet 21:730–750PubMedCentralPubMedCrossRefGoogle Scholar
  36. Mazière JC, Mazière C, Gardette J, Mora L, Polonovski J (1981) Changes in cholesterol metabolism in cultured fibroblasts from patients with Niemann-Pick disease. Biochem Biophys Res Commun 102:113–118 PubMedCrossRefGoogle Scholar
  37. Miller EH, Obernosterer G, Raaben M, et al (2012) Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J 31:1947–1960Google Scholar
  38. Naureckiene S, Sleat DE, Lackland H et al (2000) Identification of HE1 as the second gene of Niemann-Pick C disease. Science 290:2298–2301PubMedCrossRefGoogle Scholar
  39. Patterson MC, Vanier MT, Suzuki K, Morris JA, Carstea ED, Neufeld EB, Blanchette-Mackie EJ, Pentchev PG (2001) Niemann-Pick disease type C: a lipid trafficking disorder. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The Metabolic and Molecular Bases of Inherited Disease. Mc Graw Hill, New York, pp 3611–3634Google Scholar
  40. Patterson MC, Hendriksz CJ, Walterfang M, Sedel F, Vanier MT, Wijburg F (2012) Recommendations for the diagnosis and management of Niemann-Pick disease type C: an update. Mol Genet Metab 106:330–344PubMedCrossRefGoogle Scholar
  41. Patterson MC, Mengel E, Wijburg FA et al (2013) Disease and patient characteristics in NP-C patients: findings from an international disease registry. Orphanet J Rare Dis 8:12PubMedCentralPubMedCrossRefGoogle Scholar
  42. Pentchev PG, Gal AE, Booth AD et al (1980) A lysosomal storage disorder in mice characterized by a dual deficiency of sphingomyelinase and glucocerebrosidase. Biochim Biophys Acta 619:669–679PubMedCrossRefGoogle Scholar
  43. Pentchev PG, Comly ME, Kruth HS et al (1987) Group C Niemann-Pick disease: faulty regulation of low-density lipoprotein uptake and cholesterol storage in cultured fibroblasts. FASEB J 1:40–45PubMedGoogle Scholar
  44. Philippart M, Martin L, Martin JJ, Menkes JH (1969) Niemann-Pick disease. Morphologic and biochemical studies in the visceral form with late central nervous system involvement (Crocker's group C). Arch Neurol 20:227–238PubMedCrossRefGoogle Scholar
  45. Platt FM, Wassif C, Colaco A et al (2014) Disorders of cholesterol metabolism and their unanticipated convergent mechanisms of disease. Annu Rev Genomics Hum Genet 15:173–194PubMedCrossRefGoogle Scholar
  46. Poirier S, Mayer G, Murphy SR et al (2013) The cytosolic adaptor AP-1A is essential for the trafficking and function of Niemann-Pick type C proteins. Traffic 14:458–469PubMedCentralPubMedCrossRefGoogle Scholar
  47. Porter FD, Scherrer DE, Lanier MH et al (2010) Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Transl Med 2:56ra81PubMedCentralPubMedCrossRefGoogle Scholar
  48. Puri V, Watanabe R, Dominguez M et al (1999) Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nat Cell Biol 1:386–388PubMedCrossRefGoogle Scholar
  49. Reagan JW Jr, Hubbert ML, Shelness GS (2000) Posttranslational regulation of acid sphingomyelinase in Niemann-Pick type C1 fibroblasts and free cholesterol-enriched Chinese hamster ovary cells. J Biol Chem 275:38104–38110PubMedCrossRefGoogle Scholar
  50. Reid PC, Sakashita N, Sugii S et al (2004) A novel cholesterol stain reveals early neuronal cholesterol accumulation in the Niemann-Pick type C1 mouse brain. J Lipid Res 45:582–591PubMedCrossRefGoogle Scholar
  51. Ribeiro I, Marcao A, Amaral O et al (2001) Niemann-Pick type C disease: NPC1 mutations associated with severe and mild cellular cholesterol trafficking alterations. Hum Genet 109:24–32PubMedCrossRefGoogle Scholar
  52. Rodriguez-Lafrasse C, Vanier MT (1999) Sphingosylphosphorylcholine in Niemann-Pick disease brain: accumulation in type A but not in type B. Neurochem Res 24:199–205PubMedCrossRefGoogle Scholar
  53. Rodriguez-Lafrasse C, Rousson R, Pentchev PG, Louisot P, Vanier MT (1994) Free sphingoid bases in tissues from patients with type C Niemann-Pick disease and other lysosomal storage disorders. Biochim Biophys Acta 1226:138–144PubMedCrossRefGoogle Scholar
  54. Rodriguez-Lafrasse C, Rousson R, Valla S et al (1997) Modulation of protein kinase C by endogenous sphingosine: inhibition of phorbol dibutyrate binding in Niemann-Pick C fibroblasts. Biochem J 325:787–791PubMedCentralPubMedGoogle Scholar
  55. Roff CF, Goldin E, Comly ME et al (1991) Type C Niemann-Pick disease: use of hydrophobic amines to study defective cholesterol transport. Dev Neurosci 13:315–319PubMedCrossRefGoogle Scholar
  56. Salvioli R, Scarpa S, Ciaffoni F et al (2004) Glucosylceramidase mass and subcellular localization are modulated by cholesterol in Niemann-Pick disease type C. J Biol Chem 279:17674–17680PubMedCrossRefGoogle Scholar
  57. Sarkar S, Carroll B, Buganim Y et al (2013) Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell Rep 5:1302–1315PubMedCentralPubMedCrossRefGoogle Scholar
  58. Sarkar S, Maetzel D, Korolchuk VI, Jaenisch R (2014) Restarting stalled autophagy a potential therapeutic approach for the lipid storage disorder, Niemann-Pick type C1 disease. Autophagy 10:1137–1140PubMedCrossRefGoogle Scholar
  59. Sleat DE, Wiseman JA, El-Banna M et al (2004) Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci U S A 101:5886–5891PubMedCentralPubMedCrossRefGoogle Scholar
  60. Sleat DE, Wiseman JA, Sohar I et al (2012) Proteomic analysis of mouse models of Niemann-Pick C disease reveals alterations in the steady-state levels of lysosomal proteins within the brain. Proteomics 12:3499–3509PubMedCentralPubMedCrossRefGoogle Scholar
  61. Spence MW, Callahan JW (1989) Sphingomyelin-cholesterol lipidoses: the Niemann-Pick group of diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1655–1676Google Scholar
  62. Stein VM, Crooks A, Ding W et al (2012) Miglustat improves Purkinje cell survival and alters microglial phenotype in feline Niemann-Pick disease type C. J Neuropathol Exp Neurol 71:434–448PubMedCentralPubMedCrossRefGoogle Scholar
  63. Storch J, Xu Z (2009) Niemann-Pick C2 (NPC2) and intracellular cholesterol trafficking. Biochim Biophys Acta 1791:671–678PubMedCrossRefGoogle Scholar
  64. Tamura H, Takahashi T, Ban N et al (2006) Niemann-Pick type C disease: novel NPC1 mutations and characterization of the concomitant acid sphingomyelinase deficiency. Mol Genet Metab 87:113–121PubMedCrossRefGoogle Scholar
  65. Thomas GH, Tuck-Muller CM, Miller CS, Reynolds LW (1989) Correction of sphingomyelinase deficiency in Niemann-Pick type C fibroblasts by removal of lipoprotein fraction from culture media. J Inherit Metab Dis 12:139–151PubMedCrossRefGoogle Scholar
  66. Tjiong HB, Seng PN, Debuch H, Wiedemann HR (1973) Brain lipids of a case of juvenile Niemann-Pick disease. J Neurochem 21:1475–1485PubMedCrossRefGoogle Scholar
  67. van der Kant R, Zondervan I, Janssen L, Neefjes J (2013) Cholesterol binding molecules MLN64 and ORP1L mark distinct late endosomes with transporters ABCA3 and NPC1. J Lipid Res 54:2153–2165Google Scholar
  68. Vance JE (2012) Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech 5:746–755PubMedCentralPubMedCrossRefGoogle Scholar
  69. Vance JE, Karten B (2014) Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin. J Lipid Res 55:1609–1621PubMedCrossRefGoogle Scholar
  70. Vanier MT (1983) Biochemical studies in Niemann-Pick disease. I. Major sphingolipids of liver and spleen. Biochim Biophys Acta 750:178–184PubMedCrossRefGoogle Scholar
  71. Vanier MT (1999) Lipid changes in Niemann-Pick disease type C brain: personal experience and review of the literature. Neurochem Res 24:481–489PubMedCrossRefGoogle Scholar
  72. Vanier MT (2010) Niemann-Pick disease type C. Orphanet J Rare Dis 5:16PubMedCentralPubMedCrossRefGoogle Scholar
  73. Vanier MT, Latour P (2015) Laboratory diagnosis of Niemann-Pick type C: the filipin staining test. Meth Cell Biol, in pressGoogle Scholar
  74. Vanier MT, Millat G (2003) Niemann-Pick disease type C. Clin Genet 64:269–281PubMedCrossRefGoogle Scholar
  75. Vanier MT, Patterson MC (2012) Niemann-Pick disese type C. In: Mehta A, Winchester B (eds) Lysosomal storage disorders. A practical guide. Wiley-Blackwell, Chichester, pp 87–93CrossRefGoogle Scholar
  76. Vanier MT, Suzuki K (1998) Recent advances in elucidating Niemann-Pick C disease. Brain Pathol 8:163–174PubMedCrossRefGoogle Scholar
  77. Vanier MT, Revol A, Fichet M (1980) Sphingomyelinase activities of various human tissues in control subjects and in Niemann-Pick disease - development and evaluation of a microprocedure. Clin Chim Acta 106:257–267PubMedCrossRefGoogle Scholar
  78. Vanier MT, Wenger DA, Comly ME, Rousson R, Brady RO, Pentchev PG (1988) Niemann-Pick disease group C: clinical variability and diagnosis based on defective cholesterol esterification. A collaborative study on 70 patients. Clin Genet 33:331–348PubMedCrossRefGoogle Scholar
  79. Vanier MT, Pentchev P, Rodriguez-Lafrasse C, Rousson R (1991a) Niemann-Pick disease type C: an update. J Inherit Metab Dis 14:580–595PubMedCrossRefGoogle Scholar
  80. Vanier MT, Rodriguez-Lafrasse C, Rousson R et al (1991b) Type C Niemann-Pick disease: spectrum of phenotypic variation in disruption of intracellular LDL-derived cholesterol processing. Biochim Biophys Acta 1096:328–337PubMedCrossRefGoogle Scholar
  81. Vanier MT, Duthel S, Rodriguez-Lafrasse C, Pentchev P, Carstea ED (1996) Genetic heterogeneity in Niemann-Pick C disease: a study using somatic cell hybridization and linkage analysis. Am J Hum Genet 58:118–125PubMedCentralPubMedGoogle Scholar
  82. Vite C, Mauldin E, Ward S et al (2011) Intrathecal cyclodextrin therapy of feline Niemann-Pick type C disease. Mol Genet Metab 102:544CrossRefGoogle Scholar
  83. Walkley SU, Suzuki K (2004) Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochim Biophys Acta 1685:48–62PubMedCrossRefGoogle Scholar
  84. Walkley SU, Vanier MT (2009) Secondary lipid accumulation in lysosomal disease. Biochim Biophys Acta 1793:726–736PubMedCrossRefGoogle Scholar
  85. Walter M, Chen FW, Tamari F, Wang R, Ioannou YA (2009) Endosomal lipid accumulation in NPC1 leads to inhibition of PKC, hypophosphorylation of vimentin and Rab9 entrapment. Biol Cell 101:141–152PubMedCrossRefGoogle Scholar
  86. Wang ML, Motamed M, Infante RE et al (2010) Identification of surface residues on Niemann-Pick C2 essential for hydrophobic handoff of cholesterol to NPC1 in lysosomes. Cell Metab 12:166–173PubMedCentralPubMedCrossRefGoogle Scholar
  87. Weintraub H, Abramovici A, Sandbank U et al (1985) Neurological mutation characterized by dysmyelination in NCTR-Balb/C mouse with lysosomal lipid storage disease. J Neurochem 45:665–672PubMedCrossRefGoogle Scholar
  88. Willenborg M, Schmidt CK, Braun P et al (2005) Mannose 6-phosphate receptors, Niemann-Pick C2 protein, and lysosomal cholesterol accumulation. J Lipid Res 46:2559–2569PubMedCrossRefGoogle Scholar
  89. Wortmann SB, Vaz FM, Gardeitchik T et al (2012) Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet 44:797–802PubMedCrossRefGoogle Scholar
  90. Wraith JE, Sedel F, Pineda M et al (2014) Niemann-Pick type C Suspicion Index tool: analyses by age and association of manifestations. J Inherit Metab Dis 37:93–101PubMedCentralPubMedCrossRefGoogle Scholar
  91. Xie X, Brown MS, Shelton JM, Richardson JA, Goldstein JL, Liang G (2011) Amino acid substitution in NPC1 that abolishes cholesterol binding reproduces phenotype of complete NPC1 deficiency in mice. Proc Natl Acad Sci U S A 108:15330–15335PubMedCentralPubMedCrossRefGoogle Scholar
  92. Yu T, Lieberman AP (2013) Npc1 acting in neurons and glia is essential for the formation and maintenance of CNS myelin. PLoS Genet 9:e1003462PubMedCentralPubMedCrossRefGoogle Scholar
  93. Yu T, Shakkottai VG, Chung C, Lieberman AP (2011) Temporal and cell-specific deletion establishes that neuronal Npc1 deficiency is sufficient to mediate neurodegeneration. Hum Mol Genet 20:4440–4451PubMedCentralPubMedCrossRefGoogle Scholar
  94. Zervas M, Dobrenis K, Walkley SU (2001) Neurons in Niemann-Pick disease type C accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations. J Neuropathol Exp Neurol 60:49–64PubMedGoogle Scholar
  95. Zhang M, Sun M, Dwyer NK et al (2003) Differential trafficking of the Niemann-Pick C1 and 2 proteins highlights distinct roles in late endocytic lipid trafficking. Acta Paediatr Suppl 92:63–73, discussion 45PubMedCrossRefGoogle Scholar
  96. Zhang H, Wang Y, Lin N et al (2014) Diagnosis of Niemann-Pick disease type C with 7-ketocholesterol screening followed by NPC1/NPC2 gene mutation confirmation in Chinese patients. Orphanet J Rare Dis 9:82PubMedCentralPubMedCrossRefGoogle Scholar
  97. Zhou S, Davidson C, McGlynn R et al (2011) Endosomal/lysosomal processing of gangliosides affects neuronal cholesterol sequestration in Niemann-Pick disease type C. Am J Pathol 179:890–902PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© SSIEM 2014

Authors and Affiliations

  1. 1.Institut National de la Santé et de la Recherche Médicale U820Université Lyon-1 EA4611, Faculté de Médecine Lyon-EstLyonFrance

Personalised recommendations