Advertisement

Journal of Inherited Metabolic Disease

, Volume 38, Issue 1, pp 145–156 | Cite as

Genetic bases and clinical manifestations of coenzyme Q10 (CoQ10) deficiency

  • Maria Andrea Desbats
  • Giada Lunardi
  • Mara Doimo
  • Eva Trevisson
  • Leonardo Salviati
Complex Lipids

Abstract

Coenzyme Q10 is a remarkable lipid involved in many cellular processes such as energy production through the mitochondrial respiratory chain (RC), beta-oxidation of fatty acids, and pyrimidine biosynthesis, but it is also one of the main cellular antioxidants. Its biosynthesis is still incompletely characterized and requires at least 15 genes. Mutations in eight of them (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) cause primary CoQ10 deficiency, a heterogeneous group of disorders with variable age of onset (from birth to the seventh decade) and associated clinical phenotypes, ranging from a fatal multisystem disease to isolated steroid resistant nephrotic syndrome (SRNS) or isolated central nervous system disease. The pathogenesis is complex and related to the different functions of CoQ10. It involves defective ATP production and oxidative stress, but also an impairment of pyrimidine biosynthesis and increased apoptosis. CoQ10 deficiency can also be observed in patients with defects unrelated to CoQ10 biosynthesis, such as RC defects, multiple acyl-CoA dehydrogenase deficiency, and ataxia and oculomotor apraxia.

Patients with both primary and secondary deficiencies benefit from high-dose oral supplementation with CoQ10. In primary forms treatment can stop the progression of both SRNS and encephalopathy, hence the critical importance of a prompt diagnosis. Treatment may be beneficial also for secondary forms, although with less striking results.

In this review we will focus on CoQ10 biosynthesis in humans, on the genetic defects and the specific clinical phenotypes associated with CoQ10 deficiency, and on the diagnostic strategies for these conditions.

Keywords

CoQ10 Secondary Form Idebenone Steroid Resistant Nephrotic Syndrome Central Nervous System Manifestation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by Telethon Italy Grant GGP13222, a grant from Fondazione CARIPARO, and University of Padova Grant CPDA123573/12 (to L.S.) and from Ministry of Health Grant GR-2009-1578914 to (E.T.)

Compliance with ethical guidelines

Conflict of interest

None.

Human or animal studies

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. Aeby A, Sznajer Y, Cave H et al (2007) Cardiofaciocutaneous (CFC) syndrome associated with muscular coenzyme Q10 deficiency. J Inherit Metab Dis 30:827PubMedCrossRefGoogle Scholar
  2. Anheim M, Fleury M, Monga B et al (2010) Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics 11:1–12PubMedCrossRefGoogle Scholar
  3. Ashraf S, Gee HY, Woerner S et al (2013) ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 123:5179–5189PubMedCentralPubMedCrossRefGoogle Scholar
  4. Avis HJ, Hargreaves IP, Ruiter JP et al (2011) Rosuvastatin lowers coenzyme Q10 levels, but not mitochondrial adenosine triphosphate synthesis, in children with familial hypercholesterolemia. J Pediatr 158:458–462PubMedCrossRefGoogle Scholar
  5. Barros MH, Johnson A, Gin P, Marbois BN, Clarke CF, Tzagoloff A (2005) The Saccharomyces cerevisiae COQ10 gene encodes a START domain protein required for function of coenzyme Q in respiration. J Biol Chem 280:42627–42635PubMedCrossRefGoogle Scholar
  6. Bhagavan HN, Chopra RK (2007) Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion 7S:S78–S88CrossRefGoogle Scholar
  7. Bianchi GP, Fiorella PL, Bargossi AM, Grossi G, Marchesini G (1994) Reduced ubiquinone plasma levels in patients with liver cirrhosis and in chronic alcoholics. Liver 3:138–140Google Scholar
  8. Blumkin L, Leshinsky-Silver E, Zerem A, Yosovich K, Lerman-Sagie T, Lev D (2014) Heterozygous mutations in the ADCK3 gene in siblings with cerebellar atrophy and extreme phenotypic variability. JIMD 12:103–107CrossRefGoogle Scholar
  9. Buján N, Arias A, Montero R et al (2014) Characterization of CoQ10 biosynthesis in fibroblasts of patients with primary and secondary CoQ10 deficiency. J Inherit Metab Dis 37:53–62PubMedCrossRefGoogle Scholar
  10. Casarin A, Jimenez-Ortega JC, Trevisson E et al (2008) Functional characterization of human COQ4, a gene required for Coenzyme Q10 biosynthesis. Biochem Biophys Res Commun 372:35–39PubMedCrossRefGoogle Scholar
  11. Casarin A, Giorgi G, Pertegato V et al (2012) Copper and bezafibrate cooperate to rescue cytochrome c oxidase deficiency in cells of patients with SCO2 mutations. Orphanet J Rare Dis 7:21PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cordero MD, Moreno-Fernández AM, deMiguel M et al (2009) Coenzyme Q10 distribution in blood is altered in patients with fibromyalgia. Clin Biochem 42:732–735PubMedCrossRefGoogle Scholar
  13. Cornelius N, Byron C, Hargreaves I et al (2013) Secondary coenzyme Q10 deficiency 0and oxidative stress in cultured fibroblasts from patients with riboflavin responsive multiple Acyl-CoA dehydrogenation deficiency. Hum Mol Genet 22:3819–3827PubMedCrossRefGoogle Scholar
  14. Cotán D, Cordero MD, Garrido-Maraver J et al (2011) Secondary coenzyme Q10 deficiency triggers mitochondria degradation by mitophagy in MELAS fibroblasts. FASEB J 25:2669–2687PubMedCrossRefGoogle Scholar
  15. Crane FL, Navas P (1997) The diversity of coenzyme Q function. Mol Asp Med 18(Suppl):S1–S6CrossRefGoogle Scholar
  16. Deichmann R, Lavie C, Andrews S (2010) Coenzyme q10 and statin-induced mitochondrial dysfunction. Ochsner J 10:16–21PubMedCentralPubMedGoogle Scholar
  17. Dhanasekaran M, Ren J (2005) The emerging role of coenzyme Q-10 in aging, neurodegeneration, cardiovascular disease, cancer and diabetes mellitus. Curr Neurovasc Res 2:447–459PubMedCrossRefGoogle Scholar
  18. Dinwiddie DL, Smith LD, Miller NA et al (2013) Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome. Genomics 102:148–156PubMedCrossRefGoogle Scholar
  19. Diomedi-Camassei F, Di Giandomenico S, Santorelli FM et al (2007) COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol 18:2773–2780PubMedCrossRefGoogle Scholar
  20. Doimo M, Desbats MA, Cerqua C, Cassina M, Trevisson E, Salviati L (2014a) Genetics of Coenzyme Q10 deficiency. Mol Syndromol 5:156–162PubMedCentralPubMedGoogle Scholar
  21. Doimo M, Trevisson E, Airik R et al (2014b) Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency. Biochim Biophys Acta 1842:1–6PubMedCentralPubMedCrossRefGoogle Scholar
  22. Duncan AJ, Heales SJ, Mills K et al (2005) Determination of coenzyme Q10 status in blood mononuclear cells, skeletal muscle and plasma by HPLC with di-propoxy-coenzyme Q10 as an internal standard. Clin Chem 51:2380–2382PubMedCrossRefGoogle Scholar
  23. Duncan AJ, Bitner-Glindzicz M, Meunier B et al (2009) A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet 84:558–566PubMedCentralPubMedCrossRefGoogle Scholar
  24. Echtay KS, Winkler E, Klingenberg M (2000) Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 408:609–613PubMedCrossRefGoogle Scholar
  25. Emma F, Montini G, Salviati L, Dionisi-Vici C (2011) Renal mitochondrial cytopathies. Int J Nephrol 2011:609213PubMedCentralPubMedCrossRefGoogle Scholar
  26. Emma F, Bertini E, Salviati L, Montini G (2012) Renal involvement in mitochondrial cytopathies. Pediatr Nephrol 27:539–550PubMedCentralPubMedCrossRefGoogle Scholar
  27. Emmanuele V, López LC, Berardo A et al (2012) Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch Neurol 69:978–983PubMedCentralPubMedCrossRefGoogle Scholar
  28. Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1271:195–204PubMedCrossRefGoogle Scholar
  29. Falk MJ, Polyak E, Zhang Z et al (2011) Probucol ameliorates renal and metabolic sequelae of primary CoQ deficiency in Pdss2 mutant mice. EMBO Mol Med 3:410–427PubMedCentralPubMedCrossRefGoogle Scholar
  30. Fernández-Ayala DJ, Guerra I, Jiménez-Gancedo S et al (2013) Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: a modelling study for human coenzyme Q10 deficiencies. BMJ Open 3(3) doi: 10.1136/bmjopen-2012-002524
  31. Fontaine E, Ichas F, Bernardi P (1998) A ubiquinone-binding site regulates the mitochondrial permeability transition pore. J Biol Chem 273:25734–25740PubMedCrossRefGoogle Scholar
  32. Forsgren M, Attersand A, Lake S et al (2004) Isolation and functional expression of human COQ2, a gene encoding a polyprenyl transferase involved in the synthesis of CoQ. Biochem J 382:519–526PubMedCentralPubMedCrossRefGoogle Scholar
  33. Franke AA, Morrison CM, Bakke JL, Custer LJ, Li X, Cooney RV (2010) Coenzyme Q10 in human blood: native levels and determinants of oxidation during processing and storage. Free Radic Biol Med 48:1610–1617PubMedCentralPubMedCrossRefGoogle Scholar
  34. García-Corzo L, Luna-Sánchez M, Doerrier C et al (2013) Dysfunctional Coq9 protein causes predominant encephalomyopathy associated with CoQ deficiency. Hum Mol Genet 22:1233–1248PubMedCrossRefGoogle Scholar
  35. García-Corzo L, Luna-Sánchez M, Doerrier C et al (2014) Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency. Biochim Biophys Acta 1842:893–901PubMedCrossRefGoogle Scholar
  36. Gasser DL, Winkler CA, Peng M et al (2013) Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and, independently, with a decreased content of coenzyme Q10. Am J Physiol Renal Physiol 305:F1228–F1238PubMedCentralPubMedCrossRefGoogle Scholar
  37. Gempel K, Topaloglu H, Talim B et al (2007) The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 130:2037–2044PubMedCrossRefGoogle Scholar
  38. Gerards M, van den Bosch B, Calis C et al (2010) Nonsense mutations in CABC1/ADCK3 cause progressive cerebellar ataxia and atrophy. Mitochondrion 10:510–515PubMedCrossRefGoogle Scholar
  39. Haas D, Niklowitz P, Horster F et al (2009) Coenzyme Q(10) is decreased in fibroblasts of patients with methylmalonic aciduria but not in mevalonic aciduria. J Inherit Metab Dis 32:570–575PubMedCrossRefGoogle Scholar
  40. Hargreaves IP (2007) Coenzyme Q10 in phenylketonuria and mevalonic aciduria. Mitochondrion 7:S175–S180PubMedCrossRefGoogle Scholar
  41. Heeringa SF, Chernin G, Chaki M et al (2011) COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 121:2013–2024PubMedCentralPubMedCrossRefGoogle Scholar
  42. Horvath R, Czermin B, Gulati S et al (2012) Adult-onset cerebellar ataxia due to mutations in CABC1/ADCK3. J Neurol Neurosurg Psychiatry 83:174–178PubMedCrossRefGoogle Scholar
  43. Jakobs BS, van den Heuvel LP, Smeets RJ et al (2013) A novel mutation in COQ2 leading to fatal infantile multisystem disease. J Neurol Sci 326:24–28PubMedCrossRefGoogle Scholar
  44. Jeon BS, Farrer MJ, Bortnick SF; Korean Canadian Alliance on Parkinson’s Disease and Related Disorders (2014) Mutant COQ2 in multiple-system atrophy. N Engl J Med 371:80PubMedCrossRefGoogle Scholar
  45. Lagier-Tourenne C, Tazir M, López LC et al (2008) ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet 82:661–672PubMedCentralPubMedCrossRefGoogle Scholar
  46. Lapointe J, Hekimi S (2008) Early mitochondrial dysfunction in long-lived Mclk1+/- mice. J Biol Chem 283:26217–26227PubMedCentralPubMedCrossRefGoogle Scholar
  47. Littarru GP, Tiano L (2010) Clinical aspects of coenzyme Q10: an update. Nutrition 26:250–254PubMedCrossRefGoogle Scholar
  48. Liu YT, Hersheson J, Plagnol V et al (2014) Autosomal-recessive cerebellar ataxia caused by a novel ADCK3 mutation that elongates the protein: clinical, genetic and biochemical characterisation. J Neurol Neurosurg Psychiatry 85:493–498PubMedCentralPubMedCrossRefGoogle Scholar
  49. López LC, Quinzii CM, Area E et al (2010) Treatment of CoQ(10) deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects. PLoS One 5(7)Google Scholar
  50. López-Martín JM, Salviati L, Trevisson E et al (2007) Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis. Hum Mol Genet 16:1091–1097PubMedCrossRefGoogle Scholar
  51. Lu S, Lu LY, Liu MF et al (2012) Cerebellar defects in Pdss2 conditional knockout mice during embryonic development and in adulthood. Neurobiol Dis 45:219–233PubMedCrossRefGoogle Scholar
  52. Marbois B, Gin P, Faull KF et al (2005) Coq3 and Coq4 define a polypeptide complex in yeast mitochondria for the biosynthesis of coenzyme Q. J Biol Chem 280:20231–20238PubMedCrossRefGoogle Scholar
  53. Marbois B, Gin P, Gulmezian M, Clarke CF (2009) The yeast Coq4 polypeptide organizes a mitochondrial protein complex essential for coenzyme Q biosynthesis. Biochim Biophys Acta 1791:69–75PubMedCentralPubMedCrossRefGoogle Scholar
  54. Marbois B, Xie LX, Choi S, Hirano K, Hyman K, Clarke CF (2010) para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae. J Biol Chem 285:27827–27838PubMedCentralPubMedCrossRefGoogle Scholar
  55. McCarthy HJ, Bierzynska A, Wherlock M et al (2013) Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 8:637–648PubMedCentralPubMedCrossRefGoogle Scholar
  56. Miles MV, Patterson BJ, Schapiro MB et al (2006) Coenzyme Q10 absorption and tolerance in children with Down syndrome: a dose-ranging trial. Pediatr Neurol 35:30–37PubMedCrossRefGoogle Scholar
  57. Mollet J, Giurgea I, Schlemmer D et al (2007) Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J Clin Invest 117:765–772PubMedCentralPubMedCrossRefGoogle Scholar
  58. Mollet J, Delahodde A, Serre V et al (2008) CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 82:623–630PubMedCentralPubMedCrossRefGoogle Scholar
  59. Montero R, Sánchez-Alcázar JA, Briones P et al (2008) Analysis of coenzyme Q10 in muscle and fibroblasts for the diagnosis of CoQ10 deficiency syndromes. Clin Biochem 41:697–700PubMedCrossRefGoogle Scholar
  60. Montero R, Grazina M, Lopez-Gallardo E et al (2013) Coenzyme Q(1)(0) deficiency in mitochondrial DNA depletion syndromes. Mitochondrion 13:337–341PubMedCrossRefGoogle Scholar
  61. Montini G, Malaventura C, Salviati L (2008) Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med 358:2849–2850PubMedCrossRefGoogle Scholar
  62. Mugoni V, Postel R, Catanzaro V et al (2013) Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell 152:504–518PubMedCentralPubMedCrossRefGoogle Scholar
  63. Multiple-System Atrophy Research Collaboration (2013) Mutations in COQ2 in familial and sporadic multiple-system atrophy. N Engl J Med 369:233–244CrossRefGoogle Scholar
  64. Ogasahara S, Engel AG, Frens D, Mack D (1989) Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A 86:2379–2382PubMedCentralPubMedCrossRefGoogle Scholar
  65. Peng M, Falk MJ, Haase VH et al (2008) Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. PLoS Genet 4(4)Google Scholar
  66. Pierrel F, Hamelin O, Douki T et al (2010) Involvement of mitochondrial ferredoxin and para-aminobenzoic acid in yeast coenzyme Q biosynthesis. Chem Biol 17:449–459PubMedCrossRefGoogle Scholar
  67. Quinzii CM, Kattah AG, Naini A et al (2005) Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 64:539–541PubMedCrossRefGoogle Scholar
  68. Quinzii CM, Naini A, Salviati L et al (2006) A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet 78:345–349PubMedCentralPubMedCrossRefGoogle Scholar
  69. Quinzii CM, López LC, Naini A, DiMauro S, Hirano M (2008) Human CoQ10 deficiencies. Biofactors 32:113–118PubMedCentralPubMedCrossRefGoogle Scholar
  70. Quinzii CM, López LC, Gilkerson RW et al (2010) Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J 24:3733–3743PubMedCentralPubMedCrossRefGoogle Scholar
  71. Quinzii CM, Garone C, Emmanuele V et al (2013) Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice. FASEB J 27:612–621PubMedCentralPubMedCrossRefGoogle Scholar
  72. Quinzii CM, Hirano M, DiMauro S (2014) Mutant COQ2 in multiple-system atrophy. N Engl J Med 371:81–82PubMedGoogle Scholar
  73. Rahman S, Hargreaves I, Clayton P, Heales S (2001) Neonatal presentation of coenzyme Q10 deficiency. J Pediatr 139:456–468PubMedCrossRefGoogle Scholar
  74. Rahman S, Clarke CF, Hirano M (2011) 176th ENMC International Workshop: diagnosis and treatment of coenzyme Q10 deficiency. Neuromuscul Disord 22:76–86PubMedCentralPubMedCrossRefGoogle Scholar
  75. Rodríguez-Hernández A, Cordero MD, Salviati L et al (2009) Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy 5:19–32PubMedCrossRefGoogle Scholar
  76. Rotig A, Appelkvist EL, Geromel V et al (2000) Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 356:391–395PubMedCrossRefGoogle Scholar
  77. Sacconi S, Trevisson E, Salviati L et al (2010) Coenzyme Q10 is frequently reduced in muscle of patients with mitochondrial myopathy. Neuromuscul Disord 20:44–48PubMedCrossRefGoogle Scholar
  78. Saiki R, Lunceford AL, Shi Y et al (2008) Coenzyme Q10 supplementation rescues renal disease in Pdss2kd/kd mice with mutations in prenyl diphosphate synthase subunit 2. Am J Physiol Renal Physiol 295:F1535–F1544PubMedCentralPubMedCrossRefGoogle Scholar
  79. Salviati L, Sacconi S, Murer L et al (2005) Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition. Neurology 65:606–608PubMedCrossRefGoogle Scholar
  80. Salviati L, Trevisson E, Rodriguez Hernandez MA et al (2012) Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency. J Med Genet 49:187–191PubMedCentralPubMedCrossRefGoogle Scholar
  81. Scalais E, Chafai R, Van Coster R et al (2013) Early myoclonic epilepsy, hypertrophic cardiomyopathy and subsequently a nephrotic syndrome in a patient with CoQ10 deficiency caused by mutations in para-hydroxybenzoate-polyprenyl transferase (COQ2). Eur J Paediatr Neurol 17:625–630PubMedCrossRefGoogle Scholar
  82. Schottlaender LV, Houlden H, Multiple-System Atrophy (MSA) Brain Bank Collaboration (2014) Mutant COQ2 in multiple-system atrophy. N Engl J Med 371:81PubMedGoogle Scholar
  83. Sharma M, Wenning G, Krüger R, European Multiple-System Atrophy Study Group (EMSA-SG) (2014) Mutant COQ2 in multiple-system atrophy. N Engl J Med 2014(371):80–81Google Scholar
  84. Terracciano A, Renaldo F, Zanni G et al (2012) The use of muscle biopsy in the diagnosis of undefined ataxia with cerebellar atrophy in children. Eur J Paediatr Neurol 16:248–256PubMedCrossRefGoogle Scholar
  85. Tran UC, Clarke CF (2007) Endogenous synthesis of coenzyme Q in eukaryotes. Mitochondrion 7:S62–S71PubMedCentralPubMedCrossRefGoogle Scholar
  86. Trevisson E, DiMauro S, Navas P, Salviati L (2011) Coenzyme Q deficiency in muscle. Curr Opin Neurol 24:449–456PubMedCrossRefGoogle Scholar
  87. Turunen M, Swiezewska E, Chojnacki T, Sindelar P, Dallner G (2002) Regulatory aspects of coenzyme Q metabolism. Free Rad Res 36:437–443CrossRefGoogle Scholar
  88. Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta Biomembr 1660:171–199CrossRefGoogle Scholar
  89. Wenz T, Diaz F, Spiegelman BM, Moraes CT (2008) Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves amitochondrial myopathy phenotype. Cell Metab 8:249–256PubMedCentralPubMedCrossRefGoogle Scholar
  90. Xie LX, Hsieh EJ, Watanabe S et al (2011) Expression of the human atypical kinase ADCK3 rescues coenzyme Q biosynthesis and phosphorylation of Coq polypeptides in yeast coq8 mutants. Biochim Biophys Acta 1811:348–360PubMedCentralPubMedCrossRefGoogle Scholar
  91. Xie LX, Ozeir M, Tang JY et al (2012) Overexpression of the Coq8 kinase in Saccharomyces cerevisiae coq null mutants allows for accumulation of diagnostic intermediates of the coenzyme Q6 biosynthetic pathway. J Biol Chem 287:23571–23581PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© SSIEM 2014

Authors and Affiliations

  • Maria Andrea Desbats
    • 1
    • 2
  • Giada Lunardi
    • 1
    • 2
  • Mara Doimo
    • 1
    • 2
  • Eva Trevisson
    • 1
    • 2
  • Leonardo Salviati
    • 1
    • 2
  1. 1.Clinical Genetics Unit, Department of Woman and Child HealthUniversity of PadovaPadovaItaly
  2. 2.IRP Città della SperanzaPadovaItaly

Personalised recommendations